Scientific publications by AquaIMPACT

Naya-Català F et al. 2023. Broodstock nutritional programming differentially affects the hepatic transcriptome and genome-wide DNA methylome of farmed gilthead sea bream (Sparus aurata) depending on genetic background. BMC Genomics 24: 670. https://doi.org/10.1186/s12864-023-09759-7

Rimoldi S. et al. 2023. Genetically superior European sea bass (Dicentrarchus labrax) and nutritional innovations: Effects of functional feeds on fish immune response, disease resistance, and gut microbiota. Aquaculture Reports 33, 101747. https://doi.org/10.1016/j.aqrep.2023.101747

Serradell A, Torrecillas S, Soares F, Silva T, Montero D. 2023. Modelling the effect of prebiotics, probiotics and other functional additives on the growth, feed intake and feed conversion of European sea bass (Dicentrarchus labrax) juveniles. Aquaculture Reports 32, 101729. https://doi.org/10.1016/j.aqrep.2023.101729

Soares FMRC et al. 2023. Development and Application of a Mechanistic Nutrient-Based Model for Precision Fish Farming. Journal of Marine Science and Engineering 11(3): 472. https://doi.org/10.3390/jmse11030472

Montero D, Moyano FJ, Carvalho M, Sarih S, Fontanillas R, Zamorano MJ, Torrecillas S. 2023. Nutritional innovations in superior gilthead seabream (Sparus aurata) genotypes: implications in the utilization of emerging new ingredients through the study of the patterns of secretion of digestive enzymes. Aquaculture 577, 739958. https://doi.org/10.1016/j.aquaculture.2023.739958

Bruno A et al. 2023. Aquaculture ecosystem microbiome at the water-fish interface: the case-study of rainbow trout fed with Tenebrio molitor novel diets. BMC Microbiology 23, 248. https://doi.org/10.1186/s12866-023-02990-y

Fraslin C, Robledo D, Kause A, Houston RD. 2023. Potential of low-density genotype imputation for cost-efficient genomic selection for resistance to Flavobacterium columnare in rainbow trout (Oncorhynchus mykiss). GSE 55: 59. https://doi.org/10.1186/s12711-023-00832-z

Serradell A et al. 2023. Functional Additives in a Selected European Sea Bass (Dicentrarchus labrax) Genotype: Effects on the Stress Response and Gill Antioxidant Response to Hydrogen Peroxide (H2O2) Treatment. Animals 13, 2265. https://doi.org/10.3390/ani13142265

Anedda R et al. 2023. Balanced replacement of fish meal with Hermetia illucens meal allows efficient hepatic nutrient metabolism and increases fillet lipid quality in gilthead sea bream (Sparus aurata). Aquaculture 576, 739862. https://doi.org/10.1016/j.aquaculture.2023.739862

Hasan I, Rimoldi S, Saroglia G, Terova G. 2023. Sustainable fish feeds with insects and probiotics positively affect freshwater and marine fish gut microbiota. Animals 13, 1633. https://doi.org/10.3390/ani13101633

Torrecillas S et al. 2023. Genotype x nutrition interactions in European sea bass (Dicentrarchus labrax): Effects on gut health and intestinal microbiota. Aquaculture 574, 739639. https://doi.org/10.1016/j.aquaculture.2023.739639

Montero D, et al. 2023. Nutritional innovations in superior European sea bass (Dicentrarchus labrax) genotypes: Implications on fish performance and feed utilization. Aquaculture 572, 739486. https://doi.org/10.1016/j.aquaculture.2023.739486

Rimoldi S, Ceccotti C, Brambilla F, Faccenda F, Antonini M, Terova G. 2023. Potential of shrimp waste meal and insect exuviae as sustainable sources of chitin for fish feeds. Aquaculture 567, 739256. https://doi.org/10.1016/j.aquaculture.2023.739256

Ceccotti C et al. 2022. How Different Dietary Methionine Sources Could Modulate the Hepatic Metabolism in Rainbow Trout? Current Issues in Molecular Biology 44(7): 3238–3252. https://doi.org/10.3390/cimb44070223

Ferosekhan S et al. 2022. Selection for high growth improves reproductive performance of gilthead seabream Sparus aurata under mass spawning conditions, regardless of the dietary lipid source. Animal Reproduction Science 241, 106989. https://doi.org/10.1016/j.anireprosci.2022.106989

Vandeputte M, et al. 2022. Realised genetic gains on growth, survival, feed conversion ratio and quality traits after ten generations of multi-trait selection in rainbow trout Oncorhynchus mykiss, fed a standard diet or a “future” fish-free and soy-free diet. Aquaculture Reports 27, 101363. https://doi.org/10.1016/j.aqrep.2022.101363

Naya-Català F et al. 2022. Genetics and Nutrition Drive the Gut Microbiota Succession and Host-Transcriptome Interactions through the Gilthead Sea Bream (Sparus aurata) Production Cycle. Biology 11, 12, 1744. https://doi.org/10.3390/biology11121744

Calboli F, Koskinen H, Nousiainen A, Fraslin C, Houston RD, Kause A. 2022. Conserved QTL and chromosomal inversions affect resistance to columnaris disease in two rainbow trout (Oncorhyncus mykiss) populations. G3: Genes, Genomes, Genetics 12, 8. https://doi.org/10.1093/g3journal/jkac137

Kause A, Nousiainen A, Koskinen H. 2022. Improvement in feed efficiency and reduction in nutrient loading from rainbow trout farms: The role of selective breeding. Journal of Animal Science 100, 8: 1─11. https://doi.org/10.1093/jas/skac214

Naya-Català F, Piazzon MC, Calduch-Giner JÀ, Sitja-Bobadilla A, Pérez-Sánchez J. 2022. Diet and host genetics drive the bacterial and fungal intestinal metatranscriptome of gilthead sea bream. Frontiers in Microbiology 13, 883738. https://doi.org/10.3389/fmicb.2022.883738

Fraslin C, Koskinen H, Nousiainen A, Houston RD & Kause A. 2022. Genome-wide association and genomic prediction of resistance to Flavobacterium columnare in a farmed rainbow trout population. Aquaculture, 738332. https://doi.org/10.1016/j.aquaculture.2022.738332

Ceccotti C, Bruno D, Tettamanti G, Branduardi P, Bertacchi S, Labra M, Rimoldi S & Terova G. 2022. New value from food and industrial wastes – bioaccumulation of omega-3 fatty acids from an oleaginous microbial biomass paired with a brewery by-product using black soldier fly (Hermetia illucens) larvae. Waste Management 143, 95─104. https://doi.org/10.1016/j.wasman.2022.02.029

Bosi A et al. 2021. Effect of partial substitution of fishmeal with insect meal (Hermetia illucens) on gut neuromuscular function in gilthead sea bream (Sparus aurata). Scientific Reports 11, 21788. https://doi.org/10.1038/s41598-021-01242-1

Terova G et al. 2021. Using glycerol to produce European sea bass feed with oleaginous microbial biomass: Effects on growth performance, filet fatty acid profile, and FADS2 gene expression. Frontiers in Marine Science 10, 715078. https://doi.org/10.3389/fmars.2021.715078

Ferosekhan S et al. 2021. Influence of genetic selection for growth and broodstock diet n-3 LC-PUFA levels on reproductive performance of gilthead sea bream, Sparus aurata. Animals 11, 519. https://doi.org/10.3390/ani11020519

Rimoldi S, Antonini M, Gasco L, Moroni F & Terova G. 2021. Intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) may be improved by feeding a Hermetia illucens meal/low-fishmeal diet. Fish Physiology and Biochemistry 47, 365─380. https://doi.org/10.1007/s10695-020-00918-1

Moroni F et al. 2021. The effects of nisin-producing Lactococcus lactis strain used as probiotic on gilthead sea bream (Sparus aurata) growth, gut microbiota, and transcriptional response. Frontiers in Marine Science 8, 659519. https://doi.org/10.3389/fmars.2021.659519

Terova G, Gini E, Gasco L, Moroni F, Antonini M & Rimoldi, S. 2021. Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. Journal of Animal Science and Biotechnology 12, 30. https://doi.org/10.1186/s40104-021-00551-9

Torrecillas S et al. 2021. Dietary phytogenics and calactomannan oligosaccharides in low fish meal and fish oil-based diets for European sea bass (Dicentrarchus labrax) Juveniles: Effects on gill structure and health and implications on oxidative stress status. Frontiers in Immunology 12, 663106. https://doi.org/10.3389/fimmu.2021.663106

Huyben D, Rimoldi S, Ceccotti C, Montero D, Betancor M, Iannini F & Terova G. 2020. Effect of dietary oil from Camelina sativa on the growth performance, fillet fatty acid profile and gut microbiome of gilthead sea bream (Sparus aurata). PeerJ 8, e10430 https://doi.org/10.7717/peerj.10430

Piazzon MC, Naya-Català F, Perera E, Palenzuela O, Sitjà-Bobadilla A & Pérez-Sánchez J. 2020. Genetic selection for growth drives differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream. Microbiome 8, 168. https://doi.org/10.1186/s40168-020-00922-w

Rimoldi S, Gini E, Koch JFA, Iannini F, Brambilla F, & Terova G.  2020. Effect of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome. BMC Veterinary Research 16, 118: https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-020-02335-1

Terova G, Ceccotti C, Ascione C, Gasco L, & Rimoldi S. 2020. Effects of partially defatted Hermetia illucens meal in rainbow trout diet on hepatic methionine metabolism. Animals 10, 1059. https://www.mdpi.com/2076-2615/10/6/1059

Piazzon et al. 2019. Sex, Age, and Bacteria: How the intestinal microbiota is modulated in a protandrous hermaphrodite fish. Frontiers in Microbiology 10, 2512. https://www.frontiersin.org/articles/10.3389/fmicb.2019.02512/full

Vandeputte M, Gagnaire PA & Allal F. 2019. The European sea bass: a key marine fish model in the wild and in aquaculture. Animal Genetics 50, 195-206. https://onlinelibrary.wiley.com/doi/10.1111/age.12779