Methane emissions from high latitude peatlands: Constraining models with observations

> Sarah Chadburn + co-authors! Helsinki 26.4.18

Motivation

- Representing wetland CH4 emissions in Earth system model.
- CLIFFTOP: Allowed anthropogenic emissions to reach 1.5/2°C targets reduced by 9-17% when wetland CH4 feedback included (Comyn-Platt et al., in review).
- Need to properly constrain and quantify uncertainties.

Modelling CH4

My approach: simplest possible model that captures *annual mean* CH4 emissions *for the right reasons* (i.e. process based).

Observational data

Research question:

Do the observational data provide enough information to constrain the model parameters?

- **Aim**: Use robust statistical process (Monte Carlo simulation) to calculate a probability distribution in model parameters.
 - \rightarrow Quantify need for more data?
 - \rightarrow Translates to a probability distribution for the future.
- Follow work of Susiluoto et al., 2018!
- Need a plausible model first.

A plausible model?

• **JULES formulation:** depends on temperature (Tsoil), substrate (C) and wetland fraction (fwet):

$$FCH_{4} = \int_{-\infty}^{0} A f_{wet} C(z) Q_{10}^{10 T_{soil}(z)} \exp(-\tau z) dz$$

- Sum CH_4 production over the soil column with an exponential decay with depth (τ).
- Assume all CH₄ oxidised unless water table is close to surface.*

*e.g. Turetsky et al., *Global Change Biology* **20** 2183-2197 (2014)

A plausible model?

• **JULES formulation:** depends on temperature (Tsoil), substrate (C) and wetland fraction (fwet):

$$FCH_{4} = \int_{-\infty}^{0} Af_{wet} C(z) Q_{10}^{10T_{soil}(z)} \exp(-\tau z) dz$$

- Questionable:
 - \rightarrow Soil C (or NPP!) as a proxy for substrate.
 - \rightarrow Depth dependence of emissions approximated by $\tau.$

Tsoil model

 Q10, τ and scale factor fitted to Abisko and Samoylov data. Same parameters applied across all sites.

Tsoil model

- Captures variability between sites quite well
- However:

Statistical measure of plausibility (modified χ^2) is weak. Q10 is too high for global simulation (~6).

What is missing from the model?

Best fit of Tsoil model with Lompolojänkkä observations:

Day of year

What is missing from the model?

Best fit of Tsoil model with Lompolojänkkä observations:

Day of year

Equilibrium assumption

Production - Emission - Oxidation = 0

- Assumes that concentration is not changing.
- Definitely not true on sub-annual timescale

Equilibrium assumption

Production - Emission - Oxidation = 0

- Assumes that concentration is not changing.
- Definitely not true on sub-annual timescale

What is missing from the model?

• Model annual cycle is not 'pointy' enough. Q10 is too high for global simulation. These could both be linked...

Day of year

Key missing process: substrate availability?

- Seasonal cycle of substrate availability could provide
 - \rightarrow Correction to modelled annual cycle
 - \rightarrow Explanation of why we are fitting a high Q10

Seasonal cycle of substrate

- No direct measurement available? What proxies could be used?
- Model needs to be 'pointier' resembles GPP!

Day of year

Seasonal cycle of substrate

- GPP + Tsoil model: Multiply by (1+k*GPP) and re-fit other parameters.
- Better fit, but *only* if GPP is shifted so the peak is later.

Day of year

Next thoughts...

- How realistic is 'lagged' GPP as a proxy for substrate?
- Are there any better proxies?
- Does change in concentration explain the lag?

Next thoughts...

- How realistic is 'lagged' GPP as a proxy for substrate?
- Are there any better proxies?
- Does change in concentration explain the lag?

Plot and data from Annalea Lohila

Next thoughts...

- How realistic is 'lagged' GPP as a proxy for substrate?
- Are there any better proxies?
- Does change in concentration explain the lag?

 \rightarrow Annual cycle is shifted.

How does this compare to the land surface models?

Have simulated measurement sites using JULES and CLM

Interlude... What is JULES?

JULES land surface model in a nutshell

- *Vegetation:* DGVM (9 PFT's plus crops).
- Physics: Surface energy balance, dynamic snowpack, soil hydrology, freeze-thaw, organic soil characteristics...
- Soil biogeochemistry: Vertically discretised (recently added N), based on RothC.
- Wetland scheme: Dynamic, topography-based.
- Peatland dynamics: no.
- DOC: new development.

JULES land surface model in a nutshell

- *Vegetation:* DGVM (9 PFT's plus crops).
- Physics: Surface energy balance, dynamic snowpack, soil hydrology, freeze-thaw, organic soil characteristics...
- Soil biogeochemistry: Vertically discretised (recently added N), based on RothC.
- Wetland scheme: Dynamic, topography-based.
- Peatland dynamics: no. but there is enthusiasm!
- DOC: new development.

JULES land surface model

• Application to large-scale C cycle, e.g. permafrost

Site simulations with land surface models

Results from JULES and CLM: Tsoil simulation

Site simulations with land surface models

• Results from JULES and CLM: CH4 per m² of wetlands

CLM: process-based methane scheme

- CLM can simulate bust of emissions in spring.
- However, doesn't include annual cycle of substrate.

$$P = R_{\rm H} f_{\rm CH_4} f_T f_{\rm pH} f_{\rm pE} S.$$

Riley et al. Biogeosciences, 8, 1925-1953, 2011

Summary & outlook

- To constrain model parameters with observations: need a plausible model.
- Distinctive spring 'burst' related to snow/frozen ground.
- For annual mean methane emissions, the key missing process in models is *substrate availability*?

Summary & outlook

- To constrain model parameters with observations: need a plausible model.
- Distinctive spring 'burst' related to snow/frozen ground.
- For annual mean methane emissions, the key missing process in models is *substrate availability*?

- Latest JULES developments include root exudates and DOC...
- Next 5 years, fellowship project includes :
 * Development of soil tiling resolving wetlands, peatland dynamics in JULES
 - * Much more integration of model and observations.

DOC in JULES

Nakhavali et al., submitted to GMD.

How to link the observations to the models?

Proposed model:

$$FCH_{4} = \int_{-\infty}^{0} A f_{wet} DOC(z) Q_{10}^{10T_{soil}(z)} \exp(-\tau z) dz$$

- JULES: Parameters (Q10, tau) can be translated straight back to model.
- Depends on simulation of DOC and root exudates: recent additions to JULES.