

Modeling GHG and hydrological conditions of peatlands by CoupModel

Hongxing He (hongxing.he@gu.se) Department of Earth Sciences University of Gothenburg

History

- SOIL model (Jansson & Halldin, 1979)
- SOILN (Johnsson et al. 1987)
- CoupModel (Jansson & Moon, 2001)

Key characteristics

- One-dimensional, vertical layered soil profile including plant
- Strong physically based, thus applicable for all terrestrial ecosystems
- Focus on the user defined objective rather than a given scale of resolution in time and space.

Model is available free of charge: <u>http://www.coupmodel.com/</u>

CoupModel

Forcing: global radiation, precipitation, air temperature, relative humidity, wind speed

Atmosphere-soil interaction

Water and heat processes

Major inputs:

- Water retention curve
- Hydraulic conductivity
- **Drainage** level
- Thermal conductivity including LE at thawing/melting

Major inputs:

- LAI
- Root distribution
- Surface/leaf resistance
- Plant cover influence aerodynamic conditions
- Plant canopies compete

Single/Multiple Big leaf Model

Carbon and Nitrogen processes

Major inputs:

- SOM pools
- Plant biomass pools
- Plant allocation pattern
- Plant nutrient uptake
- N deposition
- Plant management
- Soil management

(Jansson and Karlberg, 2011)

Ectomycorrhiza model (He et al. 2018, GMD)

N₂O emission model (Norman et al. 2008, Ecological Modelling)

CH₄ emission model

(Jansson and Karlberg, 2011)

Handling uncertainty

Deterministic

Probabilistic (stochastic) uncertainties

Statistical methods

Possibilitstic uncertainties

Non-statistical (informal) methods

Bayesian calibration

GLUE (Juston, Phd thesis)

Short summary of CoupModel

- One-dimensional, vertical layered soil profile
- Mechanistic model with many components:

Energy, interaction with boundary layer meteorology

heat including frozen soils

Water, liquid, vapor and ice

- C and N all the major processes
- A tool to play with various combinations of parameter and equations
- Uncertainty expressed as combination of model uncertainty and parameter uncertainties

CoupModel performance on peatlands (R²)

Ecosystem	Site	Ecosystem flux			Soil gas flux		Soil abiotics		
		Н	LE	NEE	CO2	N20	Т	θ	GWL
Forests	Skogaryd	0.6	0.7	0.5		0.1	0.95	0.6	0.8
	Åsa			0.5	0.5		0.9		0.4
	Kalevansuo	0.5	0.6	0.6	0.4	0.05	0.96		0.5
	Lettosuo	0.6	0.7	0.5	0.6	0.04	0.94		0.6
Wetlands	Degerö Stormyr	0.6	0.5	0.4			0.95		0.4
	Lompolojänkkä			0.59	0.64		0.87		
	Auchencorth			0.55	0.38		0.89		
Restored	Horstermeer			0.48	0.45		0.91		
Grassland	Freisinger Moos			0.25	0.69		0.89		

N₂O emissions - Skogaryd

He et al., (2016) ecological modelling

GHG balance over rotational period

(He et al., 2016 Biogeosciences)

Forests on drained agricultural peatlands are a large GHG source 15

Scenario prediction Average of 80 years

Reducing GHG emissions by land use change

Willow and Reed canary grass with intermediate water depth Also economic feasibility

Primary Research Articles

Land use of drained peatlands: greenhouse gas fluxes, plant production, and economics

Global Change Biology

Browse Accepted Articles Accepted, unedited articles published online and citable. The final edited and

Summary

- CoupModel has been tested to simulate the hydrology and associated CO₂ and N₂O emissions for a number of managed peatlands.
- The model is also capable to simulate most of human management practices both for plants and soil.