Wetland processes in LPJ-GUESS -new possibilities

Adrian Gustafson Supervisors: Paul Miller, Ben Smith, Robert Björk Lund University Department of Physical Geography and Ecosystem Science Centre for Environment and Climate Research

With contributions from Paul Miller and Jing Tang

A little bit of history...

- Wetland processes have previously been included in the special WhyMeversion of LPJ-GUESS (Wetland Hydrology and Methane)
- New PFTs for the high latitudes were parameterised and incorporated by Wolff et al. (2008, 2010)
- N-cycling was incorporated with large implications on C-cycling and vegetation distribution
- These features have been incorporated into the framework of LPJ-GUESS, where also land use and land use change is modelled.
- Peatland heterogeneity have been investigated, where water was allowed to move from one patch to another
- DOC have been explored more recently

LPJ-GUESS – a global vegetation-ecosystem model

Representing peatland heterogeneity

Wetland hydrology

- A separate hydrology scheme for wetlands
- Soil is divided into acrotelm (sequentially inundated) and catotelm (permanently inundated)
- Water table position (WTP) in the acrotelm is modelled dynamically over time given climate input
- Evapotranspiration and runoff is dependent on the height of the WTP
- Wetland decomposition is reduced, which causes a larger buildup of peat/SOM.
- Plants become stressed if the water table position is too high, and PFTs tolerate inundation to a varying degree

Wania et a., 2010. Global Biogeochemical Cycles

An example from Degerö

WTP drives plant composition and CH₄ emissions

Wetland emissions from sites

Global CH4 emissions from wetlands

Mean annual CH4 from wetlands - 2000 to 2012

Mean annual CH4 emissions per grid 2000 - 2012

Thanks for listening!

DOC processes added into the customized arctic version of LPJ-GUESS

- For both peatland and mineral soils, the model considered processes include: DOC production, mineralization, diffusion, sorptiondesorption, leaching.
- At catchment scale, the model also considers lateral transport of DOC based on runoff.
- The developed model has been applied in a subarctic catchment. (Tang et al., 2018)

Fig. 4. The mean (thick bars) and one standard deviation (thin bars) of monthly carbon fluxes based on 52,000 simulations for mineral (a) and 32,000 simulations peatland soils (b) at the grid cell-level sensitivity analysis for 2007–2009, using a representative low elevation grid cell (A1).

- For peatland soils, DOC exports in snowmelt season is less dominant compared to mineral soils in the same region.
- Desorption is strongest in May (snow melt water adding in) and the sorption occurs mainly in winter months;
- DOC production peaks in August