Taimikonhoidon ajanmenekki vaihtelee paljon työkohteen, puuston ja työn tekijän mukaan
Kohteesta ja puustosta johtuva ajanmenekin vaihtelu on tärkeä tieto työn hinnoittelussa. Työajanmenekki on perusta palkan maksulle ja metsänomistajan laskutukselle. Tutkimuksessa kehitettiin malli taimikonhoidon ajanmenekin arviointiin ennakkoon metsävaratiedoista saataviin taustamuuttujiin pohjautuen.
Perinteisesti taimikonhoitotyömaan ajanmenekki on määritetty maastomittauksin. Mittaukset poistettavasta puustosta ja maastovaikeuden arviointi tuottavat hyvän ennusteen kohteen työvaikeudesta. Toisaalta tarkat mittaukset vievät paljon aikaa, ja arviointikustannukset voivat muodostua suuriksi lisäarvoa tuottavaan taimikonhoitotyöhön nähden. Pikainen kohteen arviointi esimerkiksi silmämääräisesti alentaa maastoarvioinnin kustannuksia, mutta heikentää tarkkuutta. Taimikonhoidon ajanmenekin arviointi mallintaen taustamuuttujien avulla on vaihtoehtoinen tai täydentävä menetelmä maastoarviolle.
Tutkimuksessa selvitettiin, mitkä taustamuuttujat vaikuttavat metsurin työajanmenekkiin taimikonhoidossa ja miten hyvin ne ennustavat työajanmenekkiä, sekä verrattiin mallin tarkkuutta käytännössä toteutettuun maastoarviointiin. Tutkimuksen aineisto vuosilta 2008–2018 kattoi 14 833 työmaata, joista kullakin vain yksi metsuri oli tehnyt taimikonhoidon.
Taimikonhoidon ajanmenekki nousi taimikon ikääntyessä ensi kertaa hoidettavissa taimikoissa n. 0,5 h/ha vuotta kohden. Varhaisperatuissa kohteissa ajanmenekki nousi hieman nopeammin, 0,8–1,1 h/ha vuotta kohden. Todennäköisesti aiemmin varhaisperattujen kohteiden korkeahko ajanmenekki ja perkaamattomia kohteita voimakkaampi ajanmenekin vuotuinen nousu selittyvät sillä, että aiemmin varhaisperatut taimikot edustavat keskimääräistä voimakkaammin vesoittuvia kohteita. Taimikonhoidon ajanmenekki nousi viljavuuden parantuessa ja turvemailla taimikonhoidon ajanmenekki oli vastaavia kivennäismaiden kasvupaikkoja korkeampi. Ajanmenekki oli keskikesällä huomattavasti kevään ajanmenekkiä korkeampi, esimerkiksi elokuussa 1,3–1,4-kertainen huhti- tai toukokuun ajanmenekkiin verrattuna. Myös pinnanmuotoihin pohjautuva kosteusindeksi, uudistamismenetelmä, uudistamisviive, maanmuokkausmenetelmä ja puulaji vaikuttivat taimikonhoidon ajanmenekkiin.
Edellä mainittujen kiinteiden selittäjien lisäksi mallissa käytettiin satunnaistekijöitä kuvaamaan vuosien, metsureiden ja työkohteiden välistä vaihtelua. Näitä satunnaisvaikutuksia ei tiedetä, kun mallilla ennustetaan työajanmenekkiä. Selittämättömästä satunnaisvaihtelusta vuosi-, metsuri- ja työkohdetekijät selittivät vastaavasti 2 %, 35 % ja 63 %. Metsurin vaikutus työajanmenekkiin taimikonhoidossa on siis suuri.
Tutkimus osoitti, että taimikonhoidon ajanmenekkiä voidaan ennustaa muuttujilla, jotka ovat saatavilla metsävaratiedoista ja paikkatietoaineistoista. Metsätietojärjestelmään liitettynä mallilla voi ennustaa taimikonhoidon ajanmenekkiä ilman maastoarviota. Lopulta mallin hyödyntäminen on tasapainoilua kustannusten ja arvion tarkkuuden välillä. On pohdittava käyttötarkoitus kerrallaan, onko säästö kustannuksissa arvokkaampi kuin menetetty ennusteen tarkkuus.
Uotila, K., Miina, J. & Saksa, T. 2020. Taimikonhoidon ajanmenekin arviointi kustannustehokkaasti metsävaratiedoista. Tutkimusseloste. Metsätieteen aikakauskirja 2020-10353. https://doi.org/10.14214/ma.10353
Uotila, K., Miina, J., Saksa, T., Store, R., Kärkkäinen, K. & Härkönen, M. 2020. Low cost prediction of time consumption for pre-commercial thinning in Finland. Silva Fennica 54(1), article id 10196. 18 s. https://doi.org/10.14214/sf.10196