
 

 

www.luke.fi/arctichubs/ 

 

Grant 869580 ArcticHubs 

Deliverable title and 

number: 

D2.4. Changes in the Arctic environment as result of climate change, D8 

Work Package: 2 

Type of Deliverable1: R Dissemination Level2: PU 

 

Lead Beneficiary: Norwegian Institute for Nature Research NINA 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
1 Deliverable Type:  

R: Document, report (excluding the periodic and final reports)  

DEM: Demonstrator, pilot, prototype, plan design  

ORDP: Open research data pilot 

DEC: Website, patent filing, press and media action, video, etc.  

OTHER: Software, technical diagram, etc. 
2 Dissemination Level:  

PU: Public, fully open, e.g., web 

CO: Confidential, restricted under conditions set out in Model Grant Agreement  

EU-RES: Classified information: RESTREINT UE (Commission Decision 2015/444/EC) 

EU-CON: Classified information: CONFIDENTIEL UE (Commission Decision 2015/444/EC) 

EU-SEC: Classified Information: SECRET UE (Commission Decision 2015/444/EC) 



 

 

Page 2 / 176 

 

 

 

Lead Author(s3): 

 

 

Bjerke JW 4, Tømmervik H 5, López-Blanco E 6, Striberny A 7, Davids C 8, 

Nikula A 9, Ólafsdóttir R 10, Karlsen SR 11, Høgda KA 12, Sandström P 13, 

Turunen M 14, Rikkonen T 15, Bogadóttir R 16, Tuulentie S 17, Arneberg MK 18, 

Siikavuopio S 19, Myntti EL 20, Jonsson N 21, Zinglersen K 22, Lynge-Pedersen K 

23, Sandström S 24, Miettinen J 25 

 

Review(s): 

Reviewer(s):  

[1°/26/09/22] 

[Pasi Rautio, Leena Suopajärvi] 

[2°/date] 

[name(s)] 

Delivery: Due date: 30/9/2022 Submission Date: 30/09/22 

 

 

 

 
Disclaimer  
This document reflects only the authors’ views and the European Union is not liable for any use that may be made of the information contained 

therein.  

 
3 Writers are listed as follows: 1) editors, 2) those, who have contributed to writing, 3) those, who have provided 

input data and/or commented on the text. 
4 Norwegian Institute for Nature Research, NINA, Norway 
5 Norwegian Institute for Nature Research, NINA, Norway 
6 Greenland Institute of Natural Resources, GINR, Greenland 
7 Nofima, Norway 
8 Norwegian Research Centre AS, NORCE, Norway 
9 Natural Resources Institute Finland, LUKE, Finland 
10 University of Iceland, Iceland 
11 Norwegian Research Centre AS, NORCE, Norway 
12 Norwegian Research Centre AS, NORCE, Norway 
13 Swedish University of Agricultural Sciences, SLU, Sweden 
14 University of Lapland, Finland 
15 University of Lapland, Finland 
16 University of Faroe Islands, Faroe Islands 
17 Natural Resources Institute Finland, LUKE, Finland 
18 Norwegian Institute for Nature Research, NINA, Norway 
19 Nofima, Norway 
20 Gran Sameby, Sweden 
21 Gran Sameby, Sweden 
22 Greenland Institute of Natural Resources, GINR, Greenland 
23 Greenland Institute of Natural Resources, GINR, Greenland 
24 Swedish University of Agricultural Sciences, SLU, Sweden 
25 Natural Resources Institute Finland, LUKE, Finland 



 

 

Page 3 / 176 

 

 

To cite the project report: Bjerke JW et al. 2022. Changes in the Arctic environment as result 

of climate change. ArcticHubs project. 

Full reference: Bjerke JW, Tømmervik H, López-Blanco E, Striberny A, Davids C, Nikula A, 

Ólafsdóttir R, Karlsen SR, Høgda KA, Sandström P, Turunen M, Rikkonen T, Bogadóttir R, 

Tuulentie S, Arneberg MK, Siikavuopio S, Myntti EL, Jonsson N, Zinglersen K, Lynge-

Pedersen K, Sandström S & Miettinen J 2022. Changes in the Arctic environment as result of 

climate change. ArcticHubs project, Grant Agreement number 869580. 

 

 

 

 



 

 

Page 4 / 176 

 

EXECUTIVE SUMMARY 

This project report summarizes and discusses the impacts of ongoing and future climate change 

on ecosystems, major industries, and indigenous livelihoods in the European Arctic, including 

Greenland. The industries in focus are fish farming (i.e., aquaculture), forestry, mining, and 

tourism. Focus is given to the 17 main study areas of the ArcticHubs project. These study areas 

are called “hubs” and are distributed in northern Finland (4 hubs), northern Sweden (3), Norway 

(4), Iceland (1), Faroe Islands (1), Greenland (1), and north-western Russia (2).  

The report relies on a combination of new data analyses, including climate projections, and a 

summary of knowledge from the vast amount of primary and secondary literature covering the 

study areas or adjacent areas with similar climate, ecosystems, and human activity. In this 

context, “primary” refers to scientific peer-reviewed research literature, while “secondary” 

refers to reviews or summaries at variable geographical scales – from regional (intra-country) 

to global. As land use change and climate change can result in similar ecosystem responses, 

this report elaborates on the distinction between various anthropogenic forces. The summary of 

the state-of-the-art is supported by analyses of recent remotely sensed changes of vegetation 

greenness for specific hubs, and climate projections retrieved from the CMIP6 ECEarth3 (Earth 

System Model) data downscaled to hub level. 

Climate has changed in the whole study area during the Anthropocene and more rapidly so than 

at lower latitudes; while the annually averaged global near-surface air temperature increased by 

1.0 °C from 1971 to 2019, the boreal-Arctic (> 60° N) near-surface air temperature increased 

by 3.1°C. The general trend is that winters have been warming more than summers. Still, some 

recent extremely warm summers have led to drought in parts of the study area. Sea temperature 

has also increased in northern Europe, resulting in reduced sea ice extent in major oceans 

(Arctic Ocean, Atlantic Ocean, Barents Sea) and in closed bodies of ocean (for example 

Norwegian fjords, Bothnia Bay, White Sea). 

Warming on land has also had major impact on the cryosphere: snow seasons have become 

shorter and wetter, snowpacks shallower and with higher density of refreezing icy layers, 

growing season start has advanced, the snow-free period in autumn has prolonged, and alpine 

and Greenlandic glaciers are retreating rapidly. Numerous regions previously characterized by 

a stable winter climate, have experienced high frequency of thaw weather (i.e., increasing 

number of days per winter with temperature above 0 °C) and unstable snow conditions.  
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Climate has changed more rapidly in the northernmost hubs, especially on Svalbard where the 

northernmost parts of the archipelago where the near-surface air temperature in the 

northernmost parts of the archipelago increased by 8 °C from 1971 to 2019.  

In this report, scenarios at hub-level relying on the Coupled Model Intercomparison Project 

Phase 6 Shared Socioeconomic Pathway 5 (SSP5) are shown. These climate projections show 

that drastic changes will occur in all hubs towards the end of the 21st Century. The entire study 

region will become warmer and wetter in all seasons, while snow accumulation will be 

drastically reduced. The high-latitude hubs will change more than the hubs and learning cases 

at lower latitudes. 

Ecosystems are changing rapidly from a combination of land use changes and climate change. 

The most rapid changes in species distribution occur in marine waters. Gradual climate change 

and increased frequency of extreme weather events have contrasting effects on ecosystems. For 

predictions of future ecosystem change, these two elements of climate change must both be 

considered.  

Nature-based industries and indigenous activities will need to drastically adapt to the ongoing 

rapid climatic changes. Arctic communities are facing highly challenging changes to their 

environment. Reindeer husbandry in Finland, Norway and Sweden is already experiencing the 

dramatic impacts of climate change. Shorter snow seasons, increasing frequency of ice layers 

in the snowpack, and unsafe lake and river ice are only some of the winter-related changes that 

have negative consequences for reindeer husbandry. Extreme heat, increasing insect 

harassment, parasitic epidemics and new invasive alien insects are examples of changes that 

lead to more challenging summer periods. Traditional Greenlandic hunting and fishing are also 

changing due to warming marine waters, shorter sea ice season, and declining populations of 

animals hunted for food and materials.  

The future magnitude of tourists to northern regions will be a result of non-climatic global 

drivers and climatic change. The risk of reduced snow amounts, increased cloudiness and 

increased rainfall in winter may affect winter tourism negatively both through their impacts on 

traditional snow activities and their impacts on northern lights watching, which can become 

harder to spot due to increasing cloudiness. On the other hand, last-chance tourism, which 

involves watching of the arctic environment with glaciers, snow-capped mountains, and arctic 

animals before it becomes a rare phenomenon, may increase in popularity. Escaping from 

summer heat tourism will probably also lead to increasing northward expansion of tourist 

masses. Arctic tourist destinations are under increasing pressure from tourism. There are signs 
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of overtourism effects on some arctic destinations, and indicators of overtourism will increase 

if last-chance and heat-escape tourism will continue to expand into northern regions. 

Warmer and longer growing seasons have the potential to stimulate to more rapid tree growth, 

and hence improve the economy in northern forestry. On the other hand, Nordic commercial 

tree species are adapted to cool summers and cold winters. The rapid climate change will 

therefore impose increasing climatic and biotic stress to trees both during the growing season 

and during the hibernation period. The total impact on the economy in forestry is therefore 

uncertain. 

The projected climate change will have direct and indirect effects on the Faroese, Icelandic and 

Norwegian fish farming hubs. Rising seawater temperatures will directly affect the conditions 

for farming of the cold-water fish species such as Atlantic salmon, which is the economically 

most important species in these hubs. Future projected increase in seawater temperature will be 

problematic for the Egersund hub, where summer seawater temperature will likely exceed 

optimal thermal limits for growth of Atlantic salmon during periods. Higher seawater 

temperatures are going to also exacerbate disease and parasite dynamics in the south, probably 

leading to northwards shift favouring fish farming hubs in the north. 

There is an enormous economic potential in northern bedrock for mineral exploration of 

critical raw materials. Retreating glaciers and declining sea ice extent lead to large new areas 

are becoming available for exploration. Within the study region, increasing hazards related to 

permafrost thaw are restricted to Greenland and Svalbard. Soil instability and changes in 

hydrology can result in damage to infrastructure, increasing weathering of installations, and 

increased leakage of pollutants. 

Overall, this study combining extensive reviews of published material and new data analyses, 

provide unanimous evidence that climate change will have massive effects on nature and 

nature-based industries and arctic livelihoods. Wide-range impacts of climate change on nature 

and society are already evident, even if it not always possible to differentiate between the 

relative weight over various drivers of change. For example, human land use, harvesting and 

pollution have led to massive changes to nature. However, during the 21st Century the impact 

of climate change will become the primary driver of changes to nature, and hence, to nature-

based industries. In some cases, climate change will stimulate economic growth, while in other 

cases, it will have negative effects on indigenous livelihoods and nature-based industries. 
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1 Introduction  

Global climate is under rapid change; the last seven years (2015-21) were the seven warmest 

years on record 26. Northern latitudes, i.e., areas poleward of 60° N, are warming more than the 

global average. In 2020, the annual mean surface air temperature anomaly for terrestrial areas 

poleward of 60° N was 2.1 °C above the 1981–2010 average; continuing a pattern of seven 

consecutive years where surface air temperature anomalies were more than 1 °C higher than 

the 1981–2010 average 27. While the annually averaged global near-surface air temperature 

(land and sea) increased by 1.0 °C from 1971 to 2019, the northern latitudes’ near-surface air 

temperature increased by 3.1°C 28. Year 2021 was the coolest year in the Arctic since 2013, but 

still the 13th-warmest year on record (since 1900) 29. 

The northern warming amplification has also led to a 43 % decline (1979-2019) in Arctic sea-

ice extent and increasing sea surface temperature 30. Surface waters in August in the North 

Atlantic region – from the west coast of Greenland to the Barents Sea – have been warming 

between 0.05 and 0.1 °C per year from 1982 to 2020. This is associated with an annual decline 

of 1.31 % of sea ice extent (measured in the month when the minimum sea ice extent occurs), 

relative to the 1981-2010 average 31. Declining sea ice results in higher-than-average warming 

trends of nearby land areas due to positive feedback loops. Over longer time scales, trends in 

sea surface temperature in the North Atlantic region differ between regions, generally with 

strong warming in the east, whereas the waters southeast of Greenland have experienced only 

weak warming, or even slight cooling over some decadal intervals 32. On shorter time scales, 

natural variations are superimposed on the anthropogenic warming as documented for various 

locations by the International Council for the Exploration of the Sea 33.  

The study area in the ArcticHubs project has a wide geographical range. Longitudinally, it 

includes study sites from the western coast of Greenland to the Kola Peninsula, while 

latitudinally it includes truly Arctic sites such as Svalbard and Greenland and forest-and-alpine 

sites in northern Italy (Figure 1.1). 

 
26 Dunn et al. 2022 
27 Druckenmiller et al. 2021 
28 Arctic Monitoring and Assessment Programme 2021, Box et al. 2022 
29 Thoman et al. 2022 
30 Box et al. 2022 
31 Meier et al 2021 
32 Lavoie et al. 2013, 2019 
33 González-Pola et al. 2020 
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Figure 1.1. Locations of hubs and learning cases targeted in ArcticHubs. Orange indicates countries with 

consortium members. Numbers in the map refer to the locations of the 17 hubs 34. Dot colours refer to target 

activities within each hub. Purple: tourism; yellow: indigenous; red: mining; blue: fish farming; green: forestry.  

There are seasonal differences in warming rate. Within the ArcticHubs’ study area, the autumn, 

winter and spring seasons are warming more rapidly than the summer season 35. Warming in 

these three seasons is most pronounced at the northernmost hub Svalbard and the two 

 
34 The map does not show the learning cases in Italy, Austria and Canada. Learning cases in Italy and Austria and 

hubs in Russia (16 and 17) were reflected on but are only briefly covered in this report. 
35 You et al. 2021 
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westernmost hubs Nuup Kangerlua (Greenland) and Westfjords (Iceland). These warming 

trends will continue during the rest of this century. However, the warming rate will depend on 

the climate mitigation efforts. 

 

This project report responds to Task 2.2. Analysis of the impact of climate change on Arctic 

terrestrial and marine ecosystems. The main research question addressed in the project report 

is: What are the main ecosystem responses to recent climate change in the Arctic target hubs 

and which further ecosystem changes are expected during the course of the 21st century?  

By responses, we mean detectable changes in terrestrial and marine ecosystems, or parts of 

ecosystems (e.g., changes in keystone and threatened species or major habitat types), that are 

attributable to climatic change, either gradual or sudden change. While gradual climate change 

generally leads to gradual changes in the distribution and abundance of a species, abrupt 

ecological change may be the result of sudden changes in forcing agents or the effects of gradual 

or stochastic changes that, either acting periodically or together, exceed some critical threshold 

or “tipping point” 36. Very rapid trend-based climatic change or increasing frequency of 

anomalous weather events because of climatic change, are examples of forcing agents that can 

cause abrupt ecological change. 

While this project report has focus on all ecosystems and living organisms on land, in 

freshwater and in sea, particular attention is given to ecosystems and species that are important 

for indigenous peoples and local economies relying on harvesting of biological resources. This 

is applicable especially (but not exclusively) for those related to the main themes of ArcticHubs, 

namely fish farming, forestry, mining and indigenous issues (Figure 1.1). Possible 

consequences of climate-induced ecosystem change on tourism is also discussed in this report.  

In the next section of the report, data and methods are described. Thereafter follow sections on 

recent and future elements of climatic change; recent and future ecosystem change on land and 

in sea; and consequences of climatic change on economic activities in the Arctic, with particular 

focus on the project’s hubs (Figure 1.1). Analyses of the relative importance of climate vs. land 

use change for the observed (historic) and modelled (future) ecosystem changes are also 

provided. Concluding remarks are provided at the end of the report. 

 
36 Harley and Paine 2009 
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2 Data and method  

This study is an analysis partly of existing information published in scientific and policy reports 

and partly relying on oral reports from people working in the field such as Sami reindeer 

herders, hunters and fishermen, and partly based on new, hitherto unpublished, quantitative 

analyses undertaken particularly for this report. It is a product of Task 2.2 (“Analysis of the 

impact of climate change on Arctic terrestrial and marine ecosystems”) of the ArcticHubs 

project 37. Data were compiled by project research partners from several fields of science with 

expert knowledge on the project’s many hubs. Thus, the dataset retrieved from published 

sources includes results from primary studies published in international scientific journals, 

summaries from global or other intercontinental reports (such as reports from the 

Intergovernmental Panel on Climate Change and the annual reports on the State of the Climate 

from the National Oceanic and Atmospheric Administration), and reports on more regional 

scales, including reports on national level and in various languages.  

The report is ordered according to theme (physical part, biological part) and scale, i.e., from 

impacts or trends nearly identical for the entire study area to impacts or trends evidently 

restricted to hub level. Various essential variables of climate change were considered.  

This includes changes to seasonal and annual temperature and precipitation at land and in 

oceans, state of precipitation (i.e., rain vs. snow), length of seasons, and onset of growing 

season. The literature review is complemented with novel, previously unpublished, analyses, 

which are described here.  

Recent (2000-2021) remotely sensed changes of vegetation greenness at regional and hub level 

are presented in sections 3.1.2 and 4.1.1, using the methodology described in Høgda et al. and 

Karlsen et al. 38. Two global data series of satellite data were processed for various Normalized 

Difference Vegetation Index (NDVI) outputs. The first is GIMMS NDVI 39 from year 1982-

 
37 Full description of Task 2.2 as stated in the project description: Task 2.2 will gain understanding of the past 

and present ecosystem states by analysing long-term data sets and collecting new data, and by comparing these 

datasets with meteorological data. Phenology and productivity trends and regional changes in state and 

composition of vegetation will be analysed in relation to climatic data (both trends and extremes), using both 

field and remotely sensed vegetation data. Relying on climate projections for the next 80 years, task 2.2. will 

apply modelling approaches to assess future states of marine and terrestrial environments based on climatic 

change only, and this will feed into tasks 2.3 and 2.4 as one of the main drivers of change. For the Arctic marine 

environment, the key questions related to changes in climate are: what are the key characteristics of past 

temporal and spatial variations in fish and benthos ecosystem, and how are these related to past climate 

variability and fishing pressure. The objective is to evaluate the effects of global environmental changes on the 

future structure of the marine ecosystem in Arctic under particular environmental and fisheries scenarios.  
38 Høgda et al. 2013, Karlsen et al. 2018  
39 Global Inventory Modelling and Mapping Studies (GIMMS) 
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2020. Furthermore, MODIS NDVI 40 was processed for the period 2000-2021 based on MODIS 

version 6.0. Several parameters related to the growing season were computed and analysed. 

This includes the yearly maximum (peak) NDVI (MaxNDVI), time of start of growing season, 

time of end of growing season, length of growing season, and summed NDVI (SumNDVI) and 

the time-integrated NDVI from onset of growth to time of peak (OP NDVI). For Svalbard, a 

new cloud-free MODIS dataset interpolated to daily data, with 231.65 m pixel resolution for 

the 2000-2021 period covering the entire archipelago have been processed. From this dataset 

several growing seasonal parameters, as mentioned above, were extracted. 

Satellite data from Iceland used in this study was acquired from NASA’s Land Processes 

Distributed Active Archive Center (LP DAAC) collections from 2022 and consists of 22 years 

of NDVI images at monthly intervals from the vegetation index dataset- MOD13A3 V6. 

Specifically, the Applications for Extracting and Exploring Analysis Ready Samples 

(AppEEARS) was used to download all NDVI imagery from 2000 to 2021, projected in 

Sinusoidal Projection 41. The spatial resolution is 1 km, and the spectral resolution is 0.6-1.1 

μm, e.g., the red and the NIR spectrum. The satellite data is collected by the MODIS-sensor 

aboard NASA’s spacecraft Terra. In addition to the NDVI images, the download request also 

included Enhanced Vegetation Index (EVI), vegetation index quality, and pixel reliability 

layers for reference. 

Hub-level data were retrieved from a coordinate located in the centre of each hub, with the 

assumption that this point is representative for the entire hub. Around this centre point, 5 × 5 

GIMMS pixels were analysed, each analysis representing 1600 km2 42. We also extracted 

MODIS-data for the same area. A total area-based analysis of each hub would have required 

much more data processing requirements. Moreover, as none of the hubs have exact 

geographical delimitations, it would be risking the inclusion of areas that are not particularly 

relevant for the hubs. Therefore, it was decided that a central point would suffice for this 

analysis. 

The same coordinates were applied in the projections of future climate change at hub level. 

Data at monthly scales were retrieved from the CMIP6 ECEarth3 data 43. These projections are 

central for the treatment of hub-specific projections of climate change until year 2100. 

 
40 Moderate-resolution Imaging Spectroradiometer (MODIS) 
41 Didan 2015, AppEEARS Team 2022  
42 Note: a GIMMS pixel is 8 km × 8 km. (8 × 8) × (5 ×5) = 1600. 
43 O’Neill et al. 2016  
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The data are discussed and analysed by the research partners from the various hubs and with 

expertise in various focal topics of the project (forestry, fish farming, mining, indigenous 

issues), after which each partner provided textual or other contributions to the report. Lead 

authors compiled the text, and after proofreading, the co-authors had a second opportunity to 

check the entire report, or parts of it, depending on their available time and expertise. Hence, 

this project report is a collaborative effort of scientists conducting studies in various fields of 

science.  

 

Figure 2.1. Forestry is one of the core activities covered in this report. This is from a production 

Scots pine forest near the Varangerfjorden hub. Photo: Jarle W. Bjerke © 
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3 Climate change in the European Arctic: recent trends and pulses, 

and projections until 2100  

While boreal and Arctic climate has changed rapidly during the last 30 years (Sections 3.1-3.2), 

this change is expected to be minor compared to the forecasted changes during the remainder 

of the 21st century. The rate of future change will depend on the global effort to halt climatic 

change through mitigation measures (Section 3.3). Regardless of mitigation efforts, the ongoing 

changes will cause major ecosystem change (Chapter 4) and entail radical adaptiveness within 

northern societies and industries 44. Societal and industrial consequences is further reviewed 

and discussed in Chapter 5. 

In this chapter, we document and discuss the physical evidence of recent and future climate 

change with particular focus of the ArcticHubs study region (Figure 1.1). 

 

3.1 Observations of long-term gradual trends (ca. 1951-2021) 

Globally, each of the last four decades has been successively warmer than any preceding decade 

since 1850 45. Warming has been most pronounced poleward of 60° N, particularly over Arctic 

seas and associated islands and archipelagos (e.g., Svalbard, Novaya Zemlya, Banks Island, 

and the north-eastern part of Greenland), but also over the northern stretches of the North 

American and Siberian continental landmasses 46.  

3.1.1 Annual temperature and precipitation 

For the most recent 5-year period (2017-2021), the annual temperature of all hubs but one 

(Figure 1.1) was 1-4 °C warmer than the base period 1951-1970 47. The only exception is Nuup 

Kangerlua, which was 0.5-1.0 °C warmer than the base period, as also confirmed in a study 

specifically focussing on this hub 48. For the ArcticHubs study region, the annual warming trend 

since 1971 is most pronounced for Svalbard, in particular the eastern half of the archipelago, 

which has warmed by more than 4.0 °C during this period. The mainland hubs of northern 

Norway, northern Finland, northern Sweden, and Kola Peninsula (hub numbers 1-10 and 16-

17) follow thereafter with a 2.0-4.0 °C temperature increase. The learning cases in Italy and 

 
44 Hovelsrud et al. 2011, Ford et al. 2021 
45 IPCC 2021 
46 NASA 2022 
47 Temperature maps retrieved from NASA 2022. Note: Comparison of annual temperature of 2011-2021 and 

2017-2021 against the base period 1951-1970, and trends for 1971-2021. 
48 López-Blanco et al. 2017 
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Austria have also experienced a pronounced warming between 2.0-4.0 °C. The remaining hubs 

have had an annual temperature increase of 1.0-2.0 °C since 1971.  

The project’s Atlantic hubs on The Faroe Islands and Iceland are surrounded by ocean on all 

sides. Historical figures since 1873 show a clear trend of temperature increase in the Faroe 

Islands 49. For this hub, the future development in temperature will critically depend on the 

temperature development of the surrounding ocean and potential changes in ocean currents, 

which are part of the Atlantic Meridional Overturning Circulation (AMOC) 50.  

A warmer atmosphere can hold more water vapour. Thus, the recent warming has been 

associated with increasing precipitation rates at high northern latitudes. Specific humidity and 

precipitation have increased at high northern latitudes 51. This is also evident from long-term 

precipitation records from the ArcticHubs study region. For example, the hubs Kvalsund-

Kautokeino and Varangerfjord in northernmost mainland Norway have had a significant annual 

precipitation increase of 1.6 % per decade (data period 1900-2014) 52. The same trend is evident 

within the Swedish study area of this project; the yearly normal for precipitation increased by 

12.3 % (± 4.9 % SD) from the 1961-1990 normal to the 1991-2020 normal for weather stations 

north or 64° N 53. Analyses of a much longer time series, from 1902 to 2018, also show that 

northern Sweden has become significantly wetter in all seasons 54, while 55 homogeneity-tested 

stations distributed throughout Norway reveal a 19 % increase in precipitation from 1900 to 

2019, during which the steepest increase took place between 1995 and 2015 55. 

In the Faroe Islands, large variation in precipitation is seen over the period from 1890 to 2020, 

masking any significant trend changes 56. Our own analyses, based on available Greenland 

meteorological data 57, show that the Nuuk area has experienced an increase of only 5.2 % in 

precipitation from the period 1958-1968 to the period 2004-2013, while its variability increased 

significantly (SD1958-1968 = 172 mm vs SD2004-2013 = 630 mm).  

Caution should be taken when interpreting time series from rain gauges. Wind and turbulence 

may in some cases lead to a severe underestimation of actual precipitation of up to 60 %, 

 
49 Cappelen 2021 
50 IPCC 2021 
51 Prowse et al. 2017 
52 Hanssen-Bauer et al. 2015 
53 Data source: Swedish Meteorological and Hydrological Institute 2022a. Note: our own analyses for this report 

based on the comparison of precipitation normals for 1961-1990 vs. 1991-2020. 
54 Chen et al. 2020 
55 Konstali & Sorteberg 2022 
56 Cappelen 2021a 
57 Cappelen 2020, 2021b 
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according to a study of time series from West Greenland 58. Improved models can account for 

much of the underestimation 59, but one should still be cautious when comparing fine-scale 

differences between two time periods.  

3.1.2 Seasonal temperature and precipitation 

There are significant seasonal differences in warming rates 60. The cold seasons at high northern 

latitudes are warming more than summers. Winter (December-February) temperature at 

latitudes between 63° and 73° N had a warming trend from 1951 to 2021 between 2.5 and 2.7 

°C (Figure 3.1), i.e., on average 0.52 °C per decade 61. The trend for summer (June-August) for 

these latitudes and the same period was only 0.29 °C per decade (Figure 3.1). Spring (March-

May) for these latitudes has warmed by 0.53 °C per decade, i.e., slightly more than winter, 

while autumn (September-November) has become 0.45 °C warmer per decade (graphics not 

shown for spring and autumn). Autumn (September-November) differs from the other three 

seasons by having a very strong latitudinal gradient in warming, with 73 °N warming 1.5 times 

faster than 63 °N. This is mostly due to steep gradients at longitudes east and west of the 

ArcticHubs study region, which is caused by slower development of sea ice in autumn 62. The 

seasonal warming trends of the ArcticHubs study region largely follow the trends of high 

northern latitudes elsewhere (Figure 3.1). These warming trends have also been documented in 

a series of national and regional reports since the 1990s.  

The high-latitude warming has led to longer thermal growing seasons; a trend analysis covering 

the period from 1950 to 2019 shows that the length of the thermal growing season of northern 

parts of Finland, Norway and Sweden with up to 3.5 days per decade, but that there is large 

heterogeneity over short distances 63.  

 

 
58 Mernild et al. 2015 
59 Vejen et al. 2021 
60 Overland et al. 2017 
61 NASA 2022. Note: Linear trends 1951-2021 
62 Meier et al. 2021 
63 Aalto et al. 2022 
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(a)       (b) 

           

(c)       (d) 

        

 

Figure 3.1. Temperature trends in the northern hemisphere for the period 1951-2022. (a) winter 

(Dec-Feb), (b) spring (Mar-May), (c) summer (Jun-Aug), (d) autumn (Sep-Oct). Retrieved from 

NASA GISTEMP 64. 

The strongest growing season increase of ca. 5 days per decade has taken place in coastal parts 

of northern Norway, which includes the coastal sections of the hub Kvalsund-Kautokeino. The 

 
64 NASA 2022. Note: Linear trends 1951-2022 for winter and spring and linear trends 1951-2021 for summer 

and autumn.  
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more continental parts of this hub have had an increase of ca. 3-4 days per decade, while the 

lowlands of Swedish and Finnish hubs have had a modest increase of 2-3 days per decade. 

Uplands of the same hubs have had an increase of less than 1.5 days per decade. These trends 

in growing season length are strongly correlated to changes in growing season degree days sum, 

which for the Norwegian, Finnish, and Swedish hubs vary between 0 and 40 degree-days per 

decade. Note that the thermal growing season is defined as the period of suitable conditions for 

plant growth, and is, hence, not equivalent to the biological growing season, which is the actual 

period of plant growth; see section 4.1.1 for trends in vegetation productivity. An important 

factor for discrepancies between the thermal and the biological growing season is the plants’ 

hibernating state, which is not switched off easily by warmer temperatures. The earlier in the 

year with temperature conditions suitable for growth, the deeper is the hibernation (frost 

hardening) and hence, the more unlikely it is that plants will start any physiological activity; 

but see section 4.2 on impacts of premature dehardening in plants.  

Seasonal trends for precipitation largely follow the whole-year trends, meaning that all seasons 

have become wetter in recent decades, however with some discrepancies from this general 

trend, as is shown in the next paragraphs. 

Circumpolar high-latitude (poleward of 60 °N) total annual precipitation, i.e., both rainfall and 

snow, increased by 9 % from 1971 to 2019, driven by a 25 % increase in rainfall, with no overall 

snowfall trend 65. Box et al. conclude that the largest precipitation increase north of 65 °N has 

taken place during the freeze-up season from October through May – when temperature 

increases are the greatest – especially along the south-eastern coasts of Greenland and Iceland, 

across the northern North Atlantic and the Barents Sea and in the vicinity of Svalbard. 

For the ArcticHubs’ land areas poleward of 60 °N, there is considerable variation in total annual 

precipitation. Annual precipitation at the northernmost parts of the Svalbard hub has increased 

substantially; there is large variation over short distances, thus the increase spans between 40 

and 100 mm, and the majority of this is due to increasing snowfall rates. The trend metric in 

mm is described as a “linear regression temporal slope multiplied by the timespan in years”. 

Areas close to the Egersund hub (Egersund at 58° N, treatment covers areas northwards of 60° 

N), has even higher precipitation increases, exclusively caused by increases in rainfall. 

Westfjords on Iceland has had a minor total increase in precipitation, but with a strong local 

gradient: annual rainfall at the north-western side of the hub has increased by 60-80 mm, while 

 
65 Box et al. 2022  
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rainfall on the south-eastern side has barely increased (0-20 mm). Snowfall in Westfjords has 

declined with 20-40 mm.  

Most land areas in hubs of northern Finland, Norway and Sweden have all become wetter from 

1971 to 2019, with increases between 0 and 60 mm during this period 66. The interior Swedish-

Finnish border area has the strongest trend, while coastal sections of the hubs Varangerfjorden 

and Kautokeino-Kvalsund, have, according to this model, no net change or may have become 

slightly drier. However, when it comes to rainfall only, all hubs in northern Finland, Norway 

and Sweden have received more, while snowfall shows opposite trends. The exception is the 

above-mentioned Finnish-Swedish border area that has a weakly increasing snowfall trend (0-

20 mm). The Nuuk hub in western Greenland show negligible annual trends, but substantially 

increasing rainfall and decreasing snowfall trends, according to the ERA5 dataset.  

In the next paragraphs, we dive deeper into precipitation trends relevant for the project’s 

industries, relying on other sources than ERA5, focussing primarily on seasonal trends. 

For northern Norway, the five-year running mean shows that nearly the entire period since 1990 

has been wetter than the normal for 1961-1990 67. The most recent 5-y period is 35 % wetter 

than 1961-1990 and 50 % wetter than 1915-1925. Spring (March-May) is similarly wet (140 % 

of 1961-1990 normal), while summer (June-August) precipitation has undergone minor change, 

being ca. 8 % wetter than the 1961-1990 normal. There has been major year-to-year fluctuation 

in summer rain since the 1950s, while the period from 1902 to 1950 was generally much drier. 

Autumn, on the contrary, is in a declining trend. The current situation (2011-2020) is a 10 % 

reduction in autumn precipitation compared to the 1961-1990 normal. Still, autumn 

precipitation is currently slightly higher than the 1900-1950 average. Autumn weather in the 

Kola Peninsula has also become slightly drier, at least in a dataset ending in 2015 68. Autumn 

is also the season in northern Sweden that differ slightly in trend from the other seasons. While 

the other three seasons have become significantly wetter, autumn shows an increasing trend, 

but this trend is only near-significant, i.e., P-value is between 0.05 and 0.10 69. 

Relative autumn precipitation values (% of 1991-2020 average 70) from 1961 to 2021 from nine 

meteorological stations in northern Finland do not show any significant linear temporal changes 

(P-values for each station between 0.13 and 0.67). Five-year running means suggest no 

 
66 Box et al. 2022, based on ERA5 data. 
67 Meteorological Institute of Norway 2021 
68 Marshall et al. 2016 
69 Chen et al. 2020 
70 Finnish Meteorological Institute 2022 
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significant precipitation change for northern Finland as a whole (average of all nine stations: r 

= 0.213, P = 0.112). However, four of the nine stations do show significant increasing trends. 

These stations are Tornio (r = 0.289, P = 0.029), Kittilä (r = 0.293, P = 0.027), Inari (r = 0.373, 

P = 0.004), and Enontekiö (r = 0.426, P < 0.001). Particularly, it is a wet period from 2007 to 

2016 that causes these significant trends (Figure 3.2). For these stations, this period was ca. 15 

% wetter than the preceding 42-year period (1965-2006). The autumns of 1989 and 1990 were 

exceptionally dry. The northern Finnish meteorological stations show a relatively uniform trend 

for the other three seasons, i.e., winter, spring, and summer, for the 1961-2021 period. Trends 

are strongest for winter, where most stations show below-average values until the mid-1990s, 

thereafter primarily above-average values. 

 

Figure 3.2. Five-year running mean of autumn precipitation in northern Finland covering four 

of the Finnish hubs (average of four meteorological stations; see text for details). Note: “2021” 

is the average of 2017-2021. Data retrieved from the Finnish Meteorological Institute. 

3.1.3 Growing season dynamics using satellite data analysis based on GIMMS data 

Our own analyses (Table 3.1) based on GIMMS satellite imagery (1982-2020) from the Nordic 

countries, the Kola Peninsula and adjacent Russian border regions south of Kola (Figure 3.3) 

confirm a clear significant trend towards an earlier onset of the growing season for the whole 

area (9.4 days earlier; p < 0.01; Table 1, second column). This is in fact a somewhat later onset 
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as compared to the trend for the period 1982-2011 71. However, trends are highly contrasting 

between regions within this study area. The growing season of the northern oceanic region, 

including the coastal sections of the hub Kvalsund-Kautokeino, is delayed by 3.3 days over the 

1982-2020 period (p < 0.05). The northern intermediate region (including Gran, Jokkmokk, 

Varangerfjord, Kovdor and Khibiny) shows the strongest delay in onset of growing season with 

5.2 days (p < 0.01), while the onset of the growing season in the northern continental region 

(Kautokeino, Kittilä, Gällivare, Gran, Kemijärvi, Kemi, Malå and Inari) is delayed by 4.1 days 

(p < 0.01). The reason for these delays is most likely related to increasing snow depths in parts 

of the Nordic Arctic region and Kola; see treatment in section 3.1.4.  

The southern intermediate region, which includes Kemi, contrasts strongly to the 

abovementioned regions. The onset of the growing season advanced by 16.7 days (p < 0.01) 

from 1982 to 2020. The southern oceanic region, which includes the hub Egersund, has an 

advance of 18.8 days (p < 0.01).  

Vegetation greenness peaked progressively later for all northern regions during the period from 

1982 to 2020. The delay was strongest in the northern continental region, where peak time has 

shifted with almost a week (Table 1, third column). The end of the growing season (= start of 

autumn), tend to occur later for all regions, but was only significant for the southern regions 

(Table 1). For the whole study area, the end of growing season was delayed by 10.4 days (p < 

0.01), contributing to an increased length of the growing season of 19.7 days (p < 0.01).  

  

 
71 Høgda et al. 2013. Note: 1982-2011 trend: 11.8 days for Fennoscandia and 19.3 days for the southern oceanic 

region 
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Figure 3.3. Map of regions described in section 3.1.3. Map reproduced from Høgda et al. 72. 

Disclaimer: Before this figure is reproduced in any public report, permission must be applied.  

 

 
72 Høgda et al. 2013. 
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Table 3.1. Trends for different parameters extracted from the GIMMS-data based on NOAA-

AVHRR data for the climatic regions of Fennoscandia, including parts of Russia (see map, 

Figure 3.3). 

GIMMS data 

Trend Onset 

Spring 

Trend peak 

time 

Trend 

Autumn 

Trend 

length 

Trend 

Peak/Maximum 

Trend Integrated 

NDVI 

Region 1982-2020 1982-2020 1982-2020 1982-2020 

Peak/Max 

1982-2020 1982-2020 

North-Oceanic 3.29* 1.71 2.40 -0.89 0.01 0.02 

North-

Intermediate 5.20** 1.41 1.30 -3.89 0.03** 0.25** 

North-

Continental 4.07* 6.79 2.59 -1.48 0.031* 0.20* 

South-Oceanic -18.83** -1.55 15.12** 33.96** 0.10 0.19** 

South-

Intermediate -16.72** -1.45 15.13** 31.85** 0.035** 0.42** 

All regions -9.36** -0.07 10.35** 9.71** 0.03** 0.32** 

* = p < 0.05, ** = p < 0.01 

 

3.1.4 Terrestrial snow season 

The steadily increasing winter warming has had strong impacts on the snow season in the 

ArcticHubs study region, affecting both the duration of the snow season and the properties of 

the snow cover (thickness, hardness, wetness, etc.) 73. A satellite-based analysis of land areas 

north of 60 °N, excluding Greenland, covering the period 1972-2014, showed a reduction in 

snow cover duration corresponding to 3.8 days per decade 74. Snow cover extent (SCE) in 

Eurasia was anomalously large in 2016, while the last year on record, 2021, had the 5th lowest 

SCE in a dataset starting in 1967 75. Since 2006, Eurasian June SCE has been below the long-

term average for all but one year. The trend on the North American continent is nearly identical. 

 
73 Bokhorst et al. 2016, Vikhamar-Schuler et al. 2016, Brown et al. 2017, Rixen et al. 2022 
74 Estilow et al. 2015 
75 Mudryk et al. 2021 
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Long-term trends for total Arctic SCE, are −3.8 ± 1.9 % per decade, and −15.5 ± 5.8 % per 

decade for May and June, respectively (1981-2021). 

Eurasian snow cover trends are generally not representative for snow cover trends within the 

north-western European study regions of ArcticHubs. Snow seasons in the northern parts of the 

Nordic Region show high interannual variability, partly caused by variation in cyclone activity, 

which affect predominating patterns of wind, weather, and energy balance, including albedo 76. 

Moreover, even if the Nordic Arctic Region (i.e., Norway, Sweden and Finland north of ca. 65° 

N) are becoming warmer also in winter, mean temperature in winter is still well below freezing. 

This, combined with a generally wetter atmosphere 77, can result in major snowfalls events. As 

an example, the meteorological station in Kautokeino, Finnmark, northern Norway, had a snow 

depth of 64 cm on 5 January 2022. In a 68-y long snow observation dataset, this day of year 

had never previously had such deep snowpack 78. The general pattern, both in long-term records 

and the most recent 20-year period, is that snow seasons are highly variable; a 25-year dataset 

(1990-2014) from a coastal site in Troms, northern Norway, showed a 9-fold year-on-year 

variation in cumulative snow depth with a similarly extreme variation in cumulative soil frost 

79. Long-term snow observations from two sites in northern Norway, one continental and one 

coastal, are shown in Figure 3.5 80. The upper panel is a composite of two stations in 

Kautokeino/Guovdageaidnu, while the lower panel is from Tromsø.  

This 52-y long dataset from Kautokeino manifests an increasing trend in maximum snow depth 

(based on our own calculations; r = 0.333, P = 0.016), but not in cumulative snow depth (i.e., 

sum of daily snow depth measurements; r = 0.198, P = 0.160). This increasing trend in 

maximum snow depth was also confirmed gridded observation-based data modelling covering 

the years from 1958 to 2017 for Troms; the interior parts of Troms, including areas close to 

Kautokeino, show increasing trends of up to 60 % in the parameter “winter maximum snow 

water equivalent” 81. 

The last day of snow in spring in Kautokeino tends to come earlier (r = −0.332, P = 0.018). 

However, this does not affect the length of the snow season, which shows no significant 

temporal trends (r = −0.181, P = 0.210) over this 52-y period. A study from Finnish Lapland 

covering winters until 2014, also documents increasing snow depths 82. A study from 

 
76 Vikhamar-Schuler et al. 2016, Brown et al. 2017 
77 Marshall et al. 2020 
78 Meteorological Institute of Norway 2022 
79 Bjerke et al. 2015 
80 Norwegian Climate Service Centre 2022 (Observations and weather statistics) 
81 Dyrrdal et al. 2020 
82 Luomaranta et al. 2019 
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Kobberfjord near Nuuk hub at western Greenland found that snowmelt timing is crucial in 

defining the beginning of the growing season and the growing season length 83.  

 

Figure 3.4. Snow-draped birch trees after a blizzard. Photo: Jarle W. Bjerke © 

 

 
83 López-Blanco et al. 2017 
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Figure 3.5. Snow depth observations from two weather stations in northern Norway from the winter 1969/70 to 2021/22 (last winter not complete at 

the time of production) to show how variable snow seasons can be in terms of maximum and cumulative snow depths. 

Kautokeino/Guovdageaidnu 

Tromsø 



 

 

www.luke.fi/arctichubs/ 

A general feature for the Arctic is that the onset of the growing season largely defines the end 

of the growing season, because once plant growth is initiated after the snowmelt in northern 

ecosystems, it continues only for a fixed number of days until the occurrence of senescence 84. 

The long-term snow depth measurements from the northernmost part of Sweden (Norra 

Norrland, i.e., Lappland, Norrbotten and Västerbotten), covering the winters from 1949/50 to 

2021/22, show large interannual variation in number of days with snow cover and no significant 

temporal trends 85. While the period 1949/50 to 1966/67 mostly had winters with lower-than-

average snow cover duration, the period from 1967/68 to 1998/99 had longer-than-average 

snow cover duration (reference period 1961-1990). Except for two winters, all winters from 

1999/2000 to 2020/21 had lower-than-average snow cover duration. This latter period, 

however, does not differ from the first period (1949/50-1966/67) of this time series. 

In the Swedish mountain region, the snow depth measurements undertaken since 1913 in 

Abisko provide strong indications of increasing long-term trends in snow depth. Maximum 

snow depth was considerably thicker in the period 1956-2004 than in the period 1913-1955 86. 

Average maximum snow depth for the 1913-2004 dataset was 51.5 cm. Snow depth data from 

the winter seasons 2004/05 to 2021/22, retrieved from the Swedish Meteorological and 

Hydrological Institute 87, show that the average maximum snow depth in this latter 17-y period 

was 77.5 cm, i.e., a 50.3 % increase compared to the 1913-2004 average. Also, within this 18-

y period, there is an increasing trend of maximum snow depth (Figure 3.6). This is a clear 

indication that upland regions of northern Sweden follow the same increasing snow trend as 

adjacent regions in Norway and Finland; see treatment above. 

 

 
84 Zona et al. 2022 
85 Swedish Meteorological and Hydrological Institute 2022 
86 Kohler et al. 2006 
87 Swedish Meteorological and Hydrological Institute 2022c 
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Figure 3.6. Maximum snow cover in Abisko, northern Sweden, winters 2003/04-2021/22, 

covering the period not included in Kohler et al. 88. Snow depth in cm. r = 0.515, P = 0.022. 

 

In contrast, the long-term snow depth data from Nuuk in West Greenland (1958-1981) had a 

4.5% higher maximum snow depth (to 95 cm; SD = 57 cm) compared to a recent time series 

(2008-2018: to 91 cm; SD = 36 cm) from a neighbouring site located 16 km away from the 

Nuuk time series that stopped in 1981 89. According to these observations, not only maximum 

snow depth is slowly declining, but also its interannual variability.  

The uplands in the Finnish-Norwegian-Swedish border region treated above are within a small 

area of Scandinavia that has experienced increasing snow cover fractions (SCF) after the turn 

of the millennium (2001-2016), according to a pan-arctic study relying on MODIS satellite 

imagery data 90; see Figure 3.7. This area with increasing SCF partly covers the hubs Gällivare, 

Kittilä and Kautokeino-Kvalsund, whereas other minor areas with increasing trends (minute 

blue dots in Figure 3.7) possibly cover parts of the hubs Inari and Varangerfjord.  

 
88 Kohler et al. 2006 
89 Cappelen 2020, López-Blanco et al. 2020 
90 Eythorsson et al. 2019 
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Figure 3.7. Areas of significant slope in snow cover fraction (SCF), at significance level 

α = 0.05 using the Sen’s slope estimator for the period 2001-2016. Blue: increasing SCF, red: 

decreasing SCF. Reproduced from Eythorsson et al. (2019). Disclaimer: Before this figure is reproduced in any 

public report, permission must be applied.  

 

This figure thus largely shows the same trends as those of the recent AMAP report 91 treated in 

the first part of this chapter. However, while the AMAP report includes years until 2019, and 

in such context provides more updated information, the study by Eythorsson et al. 92 includes 

significance analyses to evaluate whether any trends are significant or not. This figure also 

shows that snow cover in most of the ArcticHubs study region was stable from 2001 to 2016 

(grey areas). Notable exceptions are declining trends along the western coast of Greenland, 

including the hub Nuup Kangerlua (see also treatment above), declining trends in parts of 

Finland, immediately south of, or partly covering, the hubs Kemi and Kemijärvi, and increasing 

trends in large parts of Iceland, including the hub Westfjords in the north-westernmost part of 

Iceland. A study specifically focussing on Iceland confirms increasing snow trends for all 

months except October and November 93. The increasing snow cover trends in Iceland are 

mostly restricted to upland areas and are associated with post-millennial significant positive 

 
91 Box et al. 2022 
92 Eythorsson et al. 2019 
93 Gunnarsson et al. 2019 
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trends of winter mass balance of Icelandic glaciers. In contrast, the longer trend from 1951 to 

2019 in fact suggest declining snowfall trends for Iceland 94.  

In ArcticHubs’ northernmost hub, Svalbard, the snow season in spring is becoming shorter with 

ca. 2.8 days per decade, according to a time study of satellite imagery from 1982 to 2015 from 

Nordenskiöld Land, i.e., the area surrounding Longyearbyen 95. 

Even more important than changes in the abovementioned snow depth and snow cover metrics 

for vegetation, wildlife and society are changes in snowpack properties. The steadily milder 

atmosphere during winter increases the frequency of rain falling on snow, which results in hard, 

icy layers on top of, and within, the snowpack during freeze-thaw cycles 96. This topic is 

covered in further detail in Chapter 3.2, while predictions for snow until Year 2100 are covered 

in Chapter 4.1. 

 

3.1.5 Soil and permafrost  

In sections 3.1.1 to 3.1.3 we described air and surface conditions. Climate change in soil largely 

follow the aboveground trends, meaning that soil temperature increases when air temperature 

increases. There is large spatiotemporal heterogeneity in the global offset between soil and air 

temperature, often in the order of several degrees annually and up to more than 20 °C during 

winter months at high latitudes 97. Such large offset is found in the most continental areas at 

high northern latitudes where an insulating snowpack causes the large difference between 

ambient and soil thermal conditions. While temperature differences between soil and air of the 

ArcticHubs regions are generally much lower, snowpack indeed has a strong insulating impact 

also here; see sections 3.1.3 and 3.2.2 for biological impacts to snowpack disturbance. 

Long time series on soil temperature are less frequent than standard air temperature time series. 

Thus, there are comparatively few reports on soil temperature trends, especially from the 

ArcticHubs study region. Petersen 98 summarizes recent studies from around the World, and 

most studies show a warming trend. However, none of the studies cited by Petersen are from 

the ArcticHubs region. Petersen analysed a soil dataset from Hveravellir, a weather station in 

the Icelandic highlands, ca. 150 km SW of the hub Westfjords. During a 42- year period, from 

 
94 Box et al. 2022 
95 Vickers et al. 2021 
96 Bjerke et al. 2014, 2015, 2017, Hansen et al. 2014, Turunen et al. 2016, Vikhamar-Schuler et al. 2016, Serreze 

et al. 2021, Rasmus et al. 2021 
97 Lembrechts et al. 2019, 2022 
98 Petersen 2021 
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1977 to 2019, soil warming was significant in all months except May and June. This coincides 

with the snowmelt period, which varies much in duration between years. The warming trends 

at this site were largest in autumn and winter, showing a delay of 2-3 weeks in autumn cooling. 

The annual trend at 50 cm depth was 0.22 °C per decade.  

An extensive Russian soil temperature dataset includes locations in the Kola Peninsula adjacent 

to the Russian hubs of ArcticHubs (Figure 1.1). These monitoring sites are close to Finland and 

Norway. The time series for these Kola sites, covering the period from 1975 to 2016, show a 

warming trend of 0.1 to 0.5 °C per decade in annual mean temperature at 80 and 160 cm depth 

99. 

A 25-year long time series of freezing soil measured by frost tubes (hence not monitoring exact 

temperature – only whether soil at depths down to 2 m is frozen or not) from a subarctic coastal 

grassland in northern Norway showed large interannual variation and no significant temporal 

trends 100. The multi-model analysis of this time series showed that number of snow-free days 

with freezing temperatures was the primary regulator of duration and depth of freezing.  

Earth materials (soils, sediments, bedrock) that hold year-round freezing temperature are 

termed permafrost. Temperature in permafrost is increasing both in Eurasia and North America 

101. The Nordic and Greenlandic monitoring sites follow this pan-Arctic trend. For example, at 

the monitoring site at Tarfala at 1 550 m.a.s.l. located ca. 120 km north-west of the centre of 

Gällivare (see Figure 1.1), permafrost temperature has increased by ca. 0.80 °C since 2000. The 

Svalbard station at Kapp Linné has had an increase of 1.50 °C since 2000, while the site 

Janssonhaugen – also on Svalbard – has had an increase of ca. 1.45 °C since 2000.  

 

3.1.6 Coastal environment  

Primarily because of melting glaciers, sea level is rising 102. Another factor causing sea level 

rise is the expansion of seawater as it warms. Since 1900, global sea level has risen with ca. 

205 mm, half of which has taken place since 1993 103. The most recent update shows that the 

increase since 1993 is 101.2 mm, viz. an average annual increase of ca. 3.5 mm.  

 
99 Chen et al. 2021 
100 Bjerke et al. 2015 
101 Wolken et al. 2021, Box et al. 2022 
102 The IMBIE Team 2020 
103 Shaftel 2022 
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Sea level rise is affecting coastal parts of the hubs, but impacts will be more severe during the 

next decades. Finnmark (including the hubs Kvalsund-Kautokeino and Varangerfjorden) and 

south-western Norway (including the hub Egersund) are among the areas of Norway that will 

be experiencing the most rapid sea level rise at national level 104. The recent sea level rise in 

Norway has, however, been much lower than the global average, partly due to land uplift, but 

sea level varies much between the various parts of the country. Stations near Egersund have 

had a recent (1991-2020) increase of ca. 3.3 mm per year, while stations near Kvalsund-

Kautokeino have had an increase of ca. 3.6 mm per year, and annual rates are accelerating 105. 

Recent sea level change in Iceland is estimated to be 0.9-1.6 mm per year 106.  

Sea level rise is a concern in coastal areas, due to the risk of sea water damage. The combination 

of storm surge and sea level rise is already causing severe damage to infrastructure, but also to 

coastal ecosystems 107. 

 
104 Simpson et al. 2015 
105 Breili 2022 
106 Jóhannsdóttir 2020 
107 Brisson et al. 2015, Aarrestad et al. 2015, Simpson et al. 2015, Jóhannsdóttir 2020, Zinke 2022 
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3.2 Changing frequency of extreme weather (ca. 1981-2021) 

Nature and nature-based industries are vulnerable to any seasonal deviations from long-term 

averages in temperature, precipitation, snow cover and other vital elements of climate. While 

minor deviations from long-term averages can be stimulatory, larger deviations are mostly 

negative. A typical example of a stimulatory minor departure is a growing season that is slightly 

warmer (1-2 °C) than the long-term average, leading to higher-than-normal primary production. 

However, if it gets too warm, drought conditions may take effect resulting in lower-than-normal 

primary production.   

Large, short-term deviations from seasonal normals are termed “pulse weather”. The most 

deviating types of pulse weather are generally considered as being “extreme”. The 

Intergovernmental Panel on Climate Change (IPCC), the European Environment Agency 

(EEA) and other organizations early distinguished between the impacts of gradual change in 

essential climate variables and the impacts of changes in the magnitude or frequency of extreme 

weather 108. Extreme weather and its equivalent term “extreme climate event” refer to a weather 

or climate event that is rare at a particular place (and, sometimes, time of year) including, for 

example, heat waves, cold waves, heavy rains, periods of drought and flooding, and severe 

storms 109. Definitions of rare vary, but an extreme weather event would normally be as rare as 

or rarer than a particular percentile (e.g., 1st, 5th, 10th, 90th, 95th, 99th) of a probability density 

function estimated from observations expressed as departures from daily or monthly means. 

Extreme climate events have substantial negative impacts on human society and natural 

ecosystems. In this section 3.2, we summarize the current state-of-the-art for extreme weather 

that occur in the ArcticHubs study region and discuss these weather types in light of climate 

change. 

 

3.2.1 Storminess, extreme precipitation, and inland floods  

Precipitation and wind in northern Europe depend crucially on horizontal advection of moisture 

from remote regions 110. European windstorms are intense and related to travelling cyclones 

associated with larger areas of low atmospheric pressure, and they occur most frequently during 

winter, although there are certain occurrences in all seasons 111. Cyclone activity in the North 

 
108 Intergovernmental Panel on Climate Change 2001, European Environment Agency 2004, Jentsch et al. 2007 
109 National Academies of Sciences, Engineering, and Medicine 2016 
110 Trenberth 1999, 2011; Hov et al. 2013 
111 European Academies Science Advisory Council 2013, Walsh et al. 2020, 2022 
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Atlantic has increased at a rate of six events per decade 112, and this trend is largely due to 

increase in November and December, consistent with a diminished sea-ice cover 113. Mesoscale 

low-pressure systems, commonly known as ‘polar lows’, are some of the most intense Arctic 

cyclones. Historically, such cyclones have led to loss of numerous boats and lives at open sea 

and along the coasts of the North Atlantic 114. Polar lows develop rapidly when cold air flows 

over open water and are most common in the high latitudes of the North Atlantic, but there are 

no indications of any trends, partly because of little available information on historical 

frequencies of such mesoscale cyclones 115. Polar lows often hit land and are associated with 

heavy snowfall, avalanche risk, and dangerous driving conditions.  

The lack of evidence on cyclone activity trends results in limited knowledge on trends in high-

wind events at high northern latitudes 116. However, increasing trends in maximum snow depth 

in certain uplands of the Nordic Arctic region (see section 3.1.3) may be considered an 

indication of increasing impacts from polar lows, and hence also increasing frequency of 

windstorms. 

The northernmost hub, Svalbard, is warming rapidly, and especially so in winter. Winter 

weather on Svalbard is characterized by cold, stable high pressure interrupted by warmer, wetter 

low-pressure systems traveling northwards along the North Atlantic storm track 117. 

Atmospheric circulation conducive to elevated precipitation, wind speeds, and air temperatures 

near Svalbard are associated with increased avalanche activity in Nordenskiöld Land, i.e., the 

areas surrounding Longyearbyen 118, which has led to a recent increase in avalanche-induced 

loss of human lives 119.  

As shown in section 3.1.1 there are increasing trends in annual and seasonal precipitation, and 

the relative change in extreme precipitation is expected to increase faster than the mean 120. 

Walsh et al. 121 discussed the challenges of assessing historical trends in extremes of 

precipitation in the Arctic. A sparse network of gauges and a severe gauge undercatch in windy 

places are some of the reasons why such assessments are challenging. Still, valuable trend data 

 
112 Rinke et al. 2017, Walsh et al. 2020, 2022 
113 Moore 2016, Walsh et al. 2020, 2022 
114 Syse 1979, Amdahl 2022 
115 Walsh et al. 2020, 2022 
116 Walsh et al. 2020, 2022 
117 Hanssen-Bauer et al. 1990, Rogers et al. 2005, Hancock et al. 2021 
118 Hancock et al. 2021 
119 Hovelsrud et al. 2020 
120 Sillmann et al. 2013; Myhre et al. 2019 
121 Walsh et al. 2020, 2022 
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exist; northern Europe is one of the few regions globally where there is high confidence that 

human influence has contributed to increasing frequency of extreme precipitation 122. 

A large database of daily rainfall events from 281 sparsely distributed weather stations in 

Finland provide further support to the northern European trend. Using data from 1961 to 2016, 

this Finnish dataset identified statistically significant increases in extreme precipitation in some 

parts of the country including Lapland, and particularly during summer and fall seasons 123. 

The case of flooding events at high northern latitudes was recently treated extensively by Walsh 

et al. 124. They showed that, while temperature and sea ice rank at the high end of the spectra of 

evidence for change and confidence in future change, flooding rank at the lower end of the 

spectra. Here, we provide a brief overview of flooding events, focussing on the ArcticHubs 

study region.  

River floods on inland plains are generally more persistent than river floods in steep valley 

terrains, but shorter-lasting floods in steep valleys can also have large impacts on floodplain 

ecosystems and human infrastructure. Hydropower dams have been constructed on several of 

the large rivers in the Nordic Arctic region. While such dams have major environmental impacts 

above and below the area of construction, the dams may help in alleviating flooding impacts 

by reducing water height during flood situations 125. For example, in the Kemijoki river, which 

is the second largest river basin in Finland, the most severe floods took place more than 100 

years ago. They had severe impacts on the entire city of Rovaniemi, which is surrounded by 

river channels. During the two recent major spring flooding events, in 1993 and 2020, i.e. 

occurring after completion of several dam projects and local flood prevention infrastructure 

development, only a few buildings and roads suffered from damage 126. 

A time study of Norwegian catchments, covering the years from 1962 to 2012, identified 

decreasing flood frequencies in northern Norway because of decreasing trends in the frequency 

of snowmelt-dominated floods 127. The study also shows that the timing of snowmelt-dominated 

floods has shifted and is occurring earlier. A 40-year long time series from a Svalbard glacial 

catchment revealed that a 2-week earlier onset of snowmelt-driven floods, large increases in 

autumn flows, prolongation of the hydrologically active season (starts earlier and lasts longer), 

and a decrease in flows in the latter half of June and the early part of August. This resulted in a 

 
122 Seneviratne et al. 2021 
123 Pedretti & Irannezhad 2019 
124 Walsh et al. 2020, 2022 
125 Räsänen et al. 2020, Goytia 2021 
126 Räsänen 2021 
127 Vormoor et al. 2016 
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change from snowmelt-dominated to a bimodal flooding regime with peaks in both summer 

and autumn 128. 

Iceland has two other types of floods, namely glacier outburst floods and volcanically triggered 

floods 129. Warming-induced glacier outburst floods also occur on Greenland and Svalbard, and 

to a lesser extent from glaciers in Sweden and Norway 130. In Greenland, ice-dam failure causes 

frequent flooding. With the proximity of the Greenland glacier lakes to the coast this means 

that most proglacial channels in Greenland are flood-hardened and most landscape impact is 

likely to be offshore in estuaries and fjords. Smaller ice-dam events drain only a small fraction 

of the lake volume, are more frequent than large events, and have much less environmental 

impact. It is expected that glacier outburst floods will increase in frequency due to more extreme 

rainfall events and increasing velocity on ice melt. 

Flash floods often occur in the warm season caused by extreme rainfall events. Flash floods can 

cause great geomorphological changes and have fatal consequences for ecosystems, humans, 

livestock, and infrastructure 131, also within the Nordic Arctic region 132.The combination of 

increasing frequency of extreme rainfalls and increasing number of river channelization 

structures will likely lead to increasing number of flash flood events with severe socio-

economic costs, also within the ArcticHubs study region 133.  

 

3.2.2 Winter warming events 

As shown in Section 3.1, the snow season is changing more than the warm season at high 

northern latitudes. The temperature threshold at 0 °C for when water will be in liquid or solid 

state is a strong regulator of all life at high northern latitudes. Thus, temperature trends affecting 

the predominance of freezing vs. thaw weather have major implications for human life, 

ecosystems, and nature-based industries. In northern coastal regions where open sea water 

modulates temperature, mean winter temperature is rather close to the freezing temperature 

threshold 134. However, this changes over short distances inland. Continental sections of the 

Nordic Arctic region, and similarly continental parts of Nuup Kangerlua in western Greenland, 

 
128 Osuch et al. 2022 
129 Björnsson 2010, Carrivick & Tweed 2019 
130 Rachlewicz 2009,  Carrivick & Tweed 2019 
131 Blöschl et al. 2020, Moraru et al. 2021, Kahle et al. 2022 
132 Bjerke et al. 2014, Lawrence 2016 
133 Lawrence 2016, Räsänen 2021 
134 Skagseth et al. 2008, Førland et al. 2009. 
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traditionally have a much drier and colder winter climate than nearby coastal sections, which 

means average winter temperature well below freezing.  

Weather events that result in unseasonally warm winter temperature may or may not be 

considered extreme. This depends on how rare a particular event is in terms of deviation in 

temperature from the long-term average for that time of the year, the duration of the event, and 

how it affects society and nature. An event covering a large region may be considered extreme 

in some parts of the region but not extreme in other parts of the same region. For the ArcticHubs 

study region, the crossing of the 0 °C temperature threshold is an important aspect when 

evaluating whether a warming event is extreme or not. In coastal regions, where thaw periods 

and rainfall events occur nearly every year in the middle of winter, may not be considered 

extreme from a meteorological viewpoint.  

For the Nordic Arctic region, such yearly events are traditionally restricted to the most oceanic 

regions of Nordland and Troms, including Lofoten, Vesterålen and the outer (westernmost) 

coastline of the islands of Senja, Kvaløya, Ringvassøya and neighbouring small islands 135. 

Similar rainfall-dominated winter climate is prevalent in the lowlands of Iceland, including the 

hub Westfjords, while Faeroe Islands including the hub Suðuroy has an even warmer and more 

oceanic climate. Here, nearly all precipitation during winter falls as rain in the lowlands, while 

snow is, or at least has been, more common above 500 m above sea level 136. Terrestrial 

ecosystems in these oceanic landscapes are much more tolerant to temperature fluctuations 

around the freezing point than more continental ecosystems. 

Warm events during winter in the Nordic Arctic region are associated with cyclone activity i.e., 

westerlies bringing in warm and humid air from the sea 137. Thus, warm events are associated 

with high precipitation rates, which for most of a cyclone’s life falls as rain – at least along the 

coast and in the lowlands. Rainfall may result in complete snow thaw, destroying the subnivean 

environment that under normal winter conditions protects short vegetation and wildlife (e.g., 

rodents and invertebrates), against the harsh ambient winter environment 138. Impacts on 

ecosystems are treated in more detail in Chapter 4. 

After a winter warming event, temperature returns to freezing. Meltwater and remaining snow 

refreeze, and vegetation surfaces that experienced full snowmelt during the warming event are 

exposed to more severe freezing than experienced in the subnivean environment to which they 

 
135 Moen 1999, Bakkestuen et al. 2008 
136 Hansen 1966, Einarsson 1984, Tukanen 1987, Ólafsson et al. 2007,  
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138 Bjerke et al. 2014, Williams et al. 2015, Bokhorst et al. 2015, 2016 
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are adapted. Remaining snow is turned into a hard crust, which does not insulate as well as an 

airy snowpack not affected by thaw weather. Under such conditions, soil freezes deeper than 

normal and may result in delayed soil thaw. Deep soil frost can be persistent and have large 

negative consequences on infrastructure, agriculture, and ecosystems far into the growing 

season 139. 

Several hubs have repeatedly been negatively affected by winter warming events since the turn 

of the millennium. These impacts are described in chapters 4 and 5. 

 

3.2.3 Summer drought 

A study covering mid to high latitudes found a sixfold increase in historical northern 

hemisphere concurrent large heatwaves during the snow-free season May-September 140. The 

ArcticHubs study region includes a summer climate gradient from very wet to relatively dry 

areas, i.e., from highly oceanic (Faeroe Islands, Iceland) to continental (north-eastern Finland, 

Svalbard, parts of Greenland) climates 141. Summer drought is a rare event in the more oceanic-

influenced parts of the study region, but even there, drought occasionally occurs. For example, 

an atmospheric dipole blocking in July 2009 led to the driest month in Iceland in a 19-year 

study period, from 2001 to 2019 142. The drought of summer 2009 led to much lower-than-

average vegetation greenness (NDVI), as measured by satellites, indicating drought-induced 

reduction in plant vitality. A very dry period in June 2019 also led to drought in Iceland 

replenishing rivers and having negative impact on the salmon fishing season with the fish 

unable to swim upstream to complete their breeding cycle 143. The entire year of 2019 was in 

fact very dry in Iceland; western parts of the island received less than 60 % of normal 

precipitation, with a small area receiving less than 40 % 144. In particular, the period from March 

to June was very dry. The month of June 2019, and the entire summer, was also very warm and 

dry in parts of Europe, in June with a centre in northern Poland and Germany, and with warmer-

than-average temperatures northwards to the hubs in northern Sweden 145. These heatwaves 

over Europe in summer 2019 contributed to the advection of anomalously warm air over 

 
139 Kullman 1989, DeGaetano et al. 2001, Brown & DeGaetano 2011, Bjerke et al. 2015 
140 Rogers et al. 2022 
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Iceland, and over Greenland, which led to several temperature records and extreme glacier melt 

events 146.  

For more information on future drought frequency and drought-induced impacts, see sections 

3.3 and 4.2. 

 

3.3 Climate projections until 2100 

Projections are unanimous: the world, including all its regions, will become warmer. Global 

surface air temperature will continue to increase until at least mid-century under all emissions 

scenarios considered, and global warming of 1.5 °C and 2 °C will be exceeded during the 21st 

century unless deep reductions in carbon dioxide (CO2) and other greenhouse gas emissions 

occur in the coming decades 147. High northern latitudes will be warming faster than the global 

average due to the ‘Arctic amplification’ phenomenon; the amplitude of Arctic mean warming 

will remain stable at roughly twice the global mean warming 148. 

Waterbodies (oceans, lakes, rivers, glaciers, sea ice, permafrost) are also becoming warmer. 

Glaciers and sea ice are melting at an unprecedented rate. Arctic amplification is also taking 

place in oceans. The upper 2000 m of the Arctic Ocean warms at 2.3 times the global mean rate 

within this depth range averaged over the 21st century in the Coupled Model Intercomparison 

Project Phase 6 Shared Socioeconomic Pathway 5 (SSP5) scenario 149. The SSP5 baseline 

corresponds to the previously used RCP8.5 scenario. By 2081-2100, the upper 700 m of oceans 

adjacent to all hubs will be 2.5 to 5.0 °C warmer than the 1981-2000 average. Svalbard, 

Varangerfjorden and the Finnish and Swedish hubs bordering the Bothnia Bay will experience 

the highest ocean warming, while the waters surrounding Faroe Islands will warm at a slower 

rate, being ca. 2.5 to 3.5 °C warmer in 2081-2100.  This study shows that the Arctic Ocean 

warming will have an increasing rate, which can be attributed to the fact that the enhancement 

of ocean heat convergence into the Arctic Ocean will be greater than the increase of Arctic 

Ocean surface heat loss. Even the deep sea (below 900 m) will warm. The increasing ocean 

temperature will have consequences for planning of marine fish farming; see Chapter 5 for 

more information. 

 
146 Hanna et al. 2021, Walsh et al. 2022 
147 Allan et al. 2021 
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In the remaining part of this section, we look more closely into the climate projections for 

temperature, precipitation, and snow cover for the northern land areas poleward of 50° N (as 

shown in maps), focussing textually on the hubs and learning cases (Figures 3.8-3.11). The 

projections were extracted from the global climate model (GCM 150.) CMIP6 ECEarth3 

products for the period 2015-2100 under the SSP585 scenario, which corresponds to the much-

applied RCP8.5 scenario 151. Note that all projections come with a degree of uncertainty. 

Generally, uncertainty increases with time range, meaning that there is larger uncertainty for 

2081-2100 than for 2031-2050 152. In projections, uncertainty is often manifested as minor ups 

and downs over a longer time scale. Thus, the longer timer scale (for example from 2020 to 

2100) can have a clear increasing or decreasing pattern, but at shorter time scales (for example 

2030 to 2050), the same pattern may not be visible. 

Figure 3.8 (a) shows the annual mean air temperature of land areas poleward of 50° N for the 

reference period 2015-20, while Figure 3.8 (b) shows the modelled annual mean air temperature 

of the same land areas for the period 2085-2100. The loss of area with mean annual temperature 

below 0 °C is particularly striking. For the years 2085-2100, only inland areas of Greenland, 

the high-Arctic islands of north-eastern Canada, interior upland areas in the Canadian-Alaskan 

border region, and highly continental upland areas of Siberia will still have an annual mean 

temperature below 0 °C. 

 
150 From López-Blanco et al. 2022: GCMs are dynamically self-consistent climate estimations and reconciled 

with atmospheric properties and physics, their variability is, as is generally the case for a freely running GCM, 

out of phase with the actual climate evolution as only the radiative forcing from greenhouse gases and other 

anthropogenic drivers are specified as boundary conditions. Natural modes of variability are as the models 

simulate them and hence not to be expected to be in phase with observed modes. A freely running climate model 

only takes information about the real-world time evolution of the climate through information on the overall 

external drivers (e.g., specified concentrations of greenhouse gases following a particular emission scenario) 

and therefore only represents the statistical properties of the weather (i.e., the climate) at any point in time, not 

the exact timing of the weather. This approach implies that naturally varying phenomena with an internal time 

scale from weeks to multiple years will not be in phase with that of the real-world climate system. 
151 Lavoie et al. 2013, 2019, Coppola et al. 2021 
152 Collins et al. 2013 
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Figure 3.8 (a) 

 

Figure 3.8 (b)  

 

 

(Figure continues on next page) 
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(Figure 3.8 continued) 

Figure 3.8 (c) 

Figure 3.8. 21st century temperature projections for land areas poleward of 45° N. (a) Mean 

annual temperature for the reference period 2015-2020. Open squares with grey lines represent 

selected centre pixel for each hub (e.g., “Vestfirðir” = Westfjords), or group of hubs (e.g., “SW-

Fi border”) or learning cases (e.g., “AU_LC”). (b) Modelled mean annual temperature for the 

period 2085-2100 according to the CMIP6 EC-Earth3 model. (c) Time series extracts of 6-year 

anomalies (with respect to the 2015-2100 average) of recent and future air temperature in a 

selected centre pixel for each hub, or group of hubs or learning cases. Examples: “2020” = 

average of 2015-2020; “2040” = average of 2035-2040. Place name specifications: Vestfirðir 

= Westfjords. “Swedish_Finnish-B” = Swedish-Finnish border area, i.e., centre point 

representing hubs no. 1 (Kemi), 5 (Jokkmokk), and 8 (Gällivare); “E.Finland_Kola” = Eastern 

Finland and Kola Peninsula, i.e., centre point representing the hubs no. 2 (Kemjärvi), 3 (Inari), 

16 (Khibiny Mts.), and 17 (Kovdor); “Finnish_Norwegian_B” = Finnish-Norwegian border 

area, i.e., centre point representing the hubs no. 4 (Kittilä) and 9 (Kautokeino-Kvalsund); 

“Italian_LC” = Italian learning cases; “Austrian_LC” = Austrian learning cases. 
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As expected, the hub-specific (including learning case sites) temperature projections confirm 

the general warming trends. At the same time, these downscaled projections are useful for 

assessing the warming rate variations between sites (Figure 3.8 (c)). The arctic amplification 

effect results in more intense warming at the northernmost hub, Svalbard. In recent decades, 

the archipelago has warmed at a rate of 0.7-0.9 °C per decade 153. By the end of the century, 

Svalbard will be 5.0-8.0 °C warmer than the 2015-2100 average (Figure 3.8 (c)).  

By the end of the century (2085-2100) most other hubs and learning case sites will be from 3.0 

to 4.5 °C warmer than the 2015-2100 average (Figure 3.8 (c)). At the lower end of the scale are 

the two southernmost hubs Egersund and Suðuroy with a temperature anomaly in 2100 at 2.5-

3.0 °C. Nuup Kangerlua is also at the lower range. Despite having an arctic climate, it is situated 

ca. 14 latitudinal degrees south of the high-Arctic hub Svalbard. The amplification at higher 

latitudes explains why Svalbard is projected to warm much faster than Nuup Kangerlua. Still, 

the air temperature of a marine stretch in the Labrador Sea-Davis Strait area – just west of Nuup 

Kangerlua – is one of the areas that warmed quickest during the 1975-2014 period with a trend 

of 0.7-0.9 °C per decade 154. This is largely related to sea ice decline 155, and shows that warming 

rates can be very “high-Arctic-like” also at latitudes well south of the Arctic Circle. 

Precipitation models for northern land areas project increasing precipitation for most areas 

poleward of 60° N 156. There will also be a significant change in the partitioning of snow and 

rain, i.e., a transition from snow to rain with major implications for winter snowpack 157. The 

precipitation projections retrieved from the CMIP6 ECEarth3 products for the period 2015-

2100 confirm increasing annual precipitation trends (Figure 3.9 (a-b)). The most striking 

changes will take place in the more continental regions of Eurasia and North America. For the 

ArcticHubs study region, all hubs will become wetter (Figure 3.9 (c)). However, the projections 

for the Central European learning cases are less clear; see fluctuating trend lines for Italian and 

Austrian learning cases (dark blue lines). There is a tendency towards reduced precipitation 

rates in the learning cases. A recent modelling study on the impacts of future Atlantic Sea 

surface temperatures on winter precipitation in the European Alps forecasts increasing winter 

precipitation until ca. 2040, followed by decreasing trends until ca. 2070 and then another 

 
153 Wang et al. 2022 
154 Wang et al. 2022 
155 Meier et al. 2021 
156 Wang et al. 2022 
157 Vikhamar-Schuler et al. 2016, Landrum & Holland 2020, Ford & Frauenfeld 2022, Ye et al. 2021, Wang et 

al. 2022 
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period of increasing trend until 2100 158. The trend lines in Figure 3.9 (c) for the Austrian and 

Italian learning cases largely follow the same ups and downs.  

While there is a general increasing precipitation trend for all hubs (Figure 3.9 (c)), there is less 

hub variation in precipitation trends than it is for temperature trends; see treatment of 

temperature above. A general feature of the hubs is a relatively modest increase in precipitation 

until ca. 2050. The model projects an acceleration in precipitation change from ca. 2060 for 

practically all hubs.    

While precipitation will increase, there will be a massive decline in snowfall. Snow extent for 

October to December will decline with as much as 60 % by 2100 relative to the 1995-2014 

mean, according to CMIP6 projections based on the SSP5-8.5 scenario 159. This is the emission 

scenario being tracked most closely by present emissions 160. Similar reduction is expected for 

the April-June period. This is graphically shown in our assembly of CMIP6 projections for 

snow accumulation (Figure 3.10). Virtually the entire pan-arctic area will experience declines 

in snow accumulation (Figure 3.10 (a-b)). Only a highly continental area in north-eastern 

Siberia, within the Republic of Sakha (Yakutia), is projected increasing snow accumulation. 

All hubs and learning cases currently with snow accumulation will have strong declines in snow 

by 2100 (Figure 3.10 (c)). The model projects the largest declines for the hubs Svalbard and 

Gran Sameby. The latter hub is the southernmost of the Swedish hubs, and the point from where 

the model data is retrieved is situated in the forested lowlands of this long and narrow hub, 

which stretches from the alpine zone at the Norwegian-Swedish border to the Bothnian Bay.  

Some hubs will have slightly increasing trends until 2035, according to the model. This includes 

the Swedish-Finnish border area, the Norwegian hub Varangerfjord, and the Icelandic hub 

Westfjords. From ca. 2050, snow accumulation will decline in all hubs and learning cases. 

 
158 Formetta et al. 2021 
159 Mudryk et al. 2020 
160 Walsh 2021 



 

 

Page 47 / 176 

 

Figure 3.9 (a)  

 

Figure 3.9 (b)  

 

(Figure continues on next page) 
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(Figure 3.9 continued) 

Figure 3.9 (c) 

 

Figure 3.9. 21st century precipitation projections for land areas poleward of 45° N. (a) Mean 

annual precipitation rate for the reference period 2015-2020. (b) Modelled annual precipitation 

rate for the period 2085-2100 according to the CMIP6 EC-Earth3 model. (c)  Time series extract 

of the 6-year anomaly (with respect the 2015-2100 average) of expected total precipitation in 

each pixel where there is a hub. See legend of Figure 7 for description of place names. 
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Figure 3.10 (a)  

 

Figure 3.10 (b)  

 

(Figure continues on next page) 
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(Figure 3.10 continued)  

Figure 3.10 (c) 

 

Figure 3.10. 21st century snow accumulation projections for land areas poleward of 45° N. (a) 

Mean annual snow accumulation for the reference period 2015-2020. (b) Modelled annual snow 

accumulation for the period 2085-2100 according to the CMIP6 EC-Earth3 model. Maps show 

the expected 6-year snow accumulation of land areas north of 45 °N between 2015-2020 and 

2085-2100 according to CMIP6 EC-Earth3 model. (c) Time series extracts of 6-year anomalies 

(with respect to the 2015-2100 average) of recent and future snow accumulation in a selected 

centre pixel for each hub, or group of hubs or learning cases. See legend of Figure 3.8 for 

description of place names. 

 

Finally, in Figure 3.11, seasonal plots of temperature, total (i.e., liquid and snow) precipitation, 

and snowfall are shown for each hub and learning cases (or groups of nearby hubs/learning 

cases), for the periods 2015-2020 and 2085-2100. The temperature graphs (top panel) show that 

monthly temperature of all hubs and learning cases will increase substantially from 2015-2020 

to 2085-2100. The largest changes will take place at the northernmost hub, Svalbard, where 

July temperature is projected to be ca. 13 °C warmer than 2015-2020 and January temperature 

ca. 17 °C warmer. 
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Figure 3.11. Seasonal variability (January to December) of air temperature, rain, and snow at each hub comparing the monthly 2015-2020 (turquoise) 

and 2085-2100 (red) averages according to CMIP6 EC-Earth3 model. See legend of Figure 3.8 for description of place names used. 
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The high-altitude learning cases in Italy and Austria will also warm considerably, especially in 

summer (ca. 10 °C warmer than 2015-2020). The inland hubs of Finland, Norway and Sweden 

will warm considerably in wintertime; January will be 8-10 °C warmer in 2085-2100 than in 

2015-2020. Mean temperature during the four coldest months (December-March) will be at or 

close to 0 °C.  

Temperature in spring and autumn will also change considerably. For many hubs and learning 

cases spring will advance by at least a month, i.e., April monthly mean temperature in 2095-

2100 will for most hubs be higher than May monthly mean temperature in 2015-2020. For 

example, in Gran Sameby, mean temperature during 2015-2020 crossed the 0 °C line in early 

April, while this crossing will take place in early-to-mid-March in 2085-2100. A similar delay 

in 0 °C crossing will take place in autumn for hubs currently with proper freezing winter 

climate. 

Temperature change will be more modest at the very oceanic-influenced hub Suðuroy at the 

Faeroe Islands. The largest change will occur in August with a ca. 5-degree warming, while for 

most other months, temperature will increase by 2-3 °C.  

Precipitation changes (Figure 3.11, middle panel) are generally more subtle than changes in 

temperature. There is also higher uncertainty related to precipitation changes (comparing length 

of error bars between precipitation and temperature panels). There is a trend towards the largest 

changes in precipitation in summer and/or autumn. This is the case for Nuup Kangerlua, Gran 

Sameby, Malå, Westfjords, Varangerfjord, and the inland hubs in northern Finland, Sweden, 

and Norway. For example, Nuup Kangerlua can expect an approximate 40 % increase in 

September precipitation rates, while there are no clear changes in precipitation rates for the 

period from November to March for this hub.  

Snowfall (Figure 3.11, lower panel) and snow season duration will decline at all hubs and 

learning cases, except at Suðuroy, where all precipitation falls as rain even under the current 

climate. Snowfall in the most snow-rich month will only be a small fraction of current snowfall. 

For example, at the northern Finnish and Swedish hubs, snow accumulation will be ca. 20 % of 

current values. In the Finnish-Norwegian border area, for which the model states that April is 

currently the most snow-rich month, nearly all April 2085-2100 precipitation will fall as rain. 
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The same is the case for the most snow-rich month in Svalbard, May. In 2085-2100, all 

precipitation in May will fall as rain even at this high-Arctic site. 

 

3.4 Changing frequency of extreme weather events 2022-2100 

The current state of knowledge on projected changes of extremes in the Arctic was recently 

reviewed by The Arctic Monitoring and Assessment Programme 161. The Intergovernmental 

Panel on Climate Change (IPCC) have also summarized projections on extremes for northern 

regions 162. In this section 3.4 we summarize the current understanding of future impacts of 

extreme weather events, which rely on these sources, supplemented with results from primary 

research articles.  

 

3.4.1 Cold seasons 

Most regional climate models show an increase of cyclone frequency in winter (DJF) and a 

decrease in summer (JJA) to the end of the 21st century 163. Within the ArcticHubs study region, 

increases in winter are projected to occur in the Barents Sea and north of Greenland, while 

decreases are projected in the Nordic seas, which is largely equivalent to the Greenland Sea, 

the Norwegian Sea, and the Iceland Sea. Reduced sea ice will enhance intensification of winter 

storms over the Arctic Ocean, by enhancing the surface turbulent heat fluxes and lessening 

static stability while also strengthening vertical shear of horizontal wind 164. This means that 

future sea ice reductions (e.g., related to delayed autumn freeze-up) will likely enhance Arctic 

cyclone intensification in winter and spring and increase cyclone-associated precipitation. 

The projected increase of annual mean precipitation at high northern latitudes will also result 

in increased frequency of extreme precipitation events 165. As more of the precipitation in winter 

will fall as rain (see section 3.3), it is likely that there will be fewer snowstorms towards the 

end of the century in the entire ArcticHubs study region, even in the northernmost hubs such as 

Svalbard. Increased frequency of extreme rainstorms in winter will lead to increasing numbers 

of flash floods, more soil erosion and abrupt permafrost thaw where it is still present. 

 
161 Walsh et al. 2020, 2022 
162 Collins et al. 2019, Hock et al. 2019, Meredith et al. 2019 
163 Akperov et al. 2019 
164 Crawford et al. 2022 
165 Walsh 2021, Walsh et al. 2020, 2022 
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Snowstorm frequency will be declining, but will still occur, albeit at a lower frequency, and be 

restricted to the northernmost hubs, especially towards the end of the 21st century (Figure 3.10).  

Rain-on-snow (ROS) events adversely affect humans, vegetation, hydrology, and wildlife, and 

further affect the local climate by altering snowmelt, runoff, and soil temperatures 166. ROS 

events are projected to increase in frequency at continental high northern latitudes, such as the 

interior parts of Alaska, but will most likely decrease in more maritime-influenced areas 167. 

Thus, winter rain will at a higher frequency fall on bare ground, and not on snow. Northern 

terrestrial ecosystems are adapted to the hibernating state provided by a permanent snow cover 

and frozen soils. Winter rain will thus affect ecosystems negatively in at least two ways: it will 

remove any remaining protective snow layer, and it will cause increased soil erosion. 

Ecosystem-damaging winter warming events, which have increased in frequency over the past 

50 years, are associated with fluctuations in temperature around 0 °C; see section 3.2. While 

freezing conditions are still prevalent at high northern latitudes, long and frequent periods of 

thaw weather with limited snow accumulation will become the norm for most northern regions 

during the 21st century; see Section 3.3. Thus, cold-tolerant ecosystems will have to quickly 

adapt (in ecological terms) to near-constant mild weather with sporadic freezing events. Even 

the most high-Arctic hub, Svalbard, will by 2071-2100 have an average midwinter (DJF) 

temperature close to 0 °C; recent (1971-2000) midwinter temperature on Svalbard Airport 

Longyearbyen is −13.9 °C, while median projected increase in midwinter temperature under an 

RCP8.5 scenario is 15.1 °C 168.  

Thus, terminology will change from “winter warming events” to “winter freezing events” for 

most of the hubs and learning cases. “Winter freezing events” is a term already in use to describe 

damage in plants that grow in warm temperate and Mediterranean climates 169, and in cold-

tolerant plants that are exposed to extreme freezing temperature regimes, often below −30 °C 

170. Long exposure to mild winter weather will reduce frost hardiness and/or disturb hibernation 

in plants, animals and soil microbiota. Thus, even short exposure to freezing weather in a thaw-

dominated winter climate can have major damaging or even mortal effects. See section 4.3 for 

further information. 

 
166 Bjerke et al. 2015, Cohen et al 2015, Walsh et al. 2020 
167 Bintanja & Andry 2017, Bieniek et al. 2018 
168 Hanssen-Bauer et al. 2019 
169 Hultine et al. 2018, Gonzalez Antivilo et al. 2020 
170 Beck et al. 2004, Man et al. 2021 
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Sporadic episodes of atmospheric blocking may drive future winter climate changes in opposite 

directions than the overall trends. An example of such blocking occurred during the winter of 

2012/13 resulting in a long period of easterlies and dry, cold weather in parts of Finland, 

Sweden, and Norway 171. See next section (Growing season) on more information on 

atmospheric blocking and possible increase during the 21st century. 

3.4.2 Growing season 

For the summer seasons, the climate models simulate an increase of cyclone frequency over the 

Central Arctic and Greenland Sea and a decrease over the Norwegian and Kara Seas by the end 

of the 21st century 172. It implies that the hub Westfjords on Iceland will be more affected by 

heavy winds and rainstorms in summer seasons during the 21st century, while hubs in Finland, 

Norway, Sweden, Kola and western Greenland will be less affected.  

Still, all hubs will become wetter (see Section 3.3), and episodes of heavy rain are expected to 

increase because of a moister and warmer atmosphere, and such episodes will result in an 

increasing frequency of flash floods, surface water, rock avalanches, landslides, permafrost 

thaw, and soil erosion 173. Increasing frequency of such events is already ongoing in several 

hubs, especially the northernmost hub, Svalbard, where flash floods, permafrost degradation, 

landslides and thermokarst development have increased in frequency.  

While summer climate will become wetter, warming will induce increased evaporation. In 

addition, earlier snowmelt will result in lower water volumes in rivers during summer months. 

Overall, for the Finnish, Norwegian and Swedish hubs, this leads to increasing probability for 

summer drought and forest fire risk during the 21st century 174.  

An uncertainty for future climate, and hence for distribution of precipitation, is the future 

frequency of atmospheric blocking events. Such blocks can remain in place for several days or 

even weeks and are the driver of several extreme climatic events, since affected areas have the 

same kind of weather for prolonged periods 175; see descriptions of such blocking events in 

Sections 3.2.3 and 3.4.1. There is a clear increasing trend of northern hemisphere blocking 

occurrences since 1965 176. Europe is identified as a dominant region of blocking in most 

indices, due to the configuration of a strong, meridionally tilted storm track upstream of a large 

 
171 Iden et al. 2012, Kristiansen et al. 2013, Bjerke et al. 2017a, Treharne et al. 2019  
172 Akperov et al. 2019 
173 European Academies Science Advisory Council 2013, Hanssen-Bauer et al. 2015, O’Gorman 2015, Kharin et 

al. 2018, Sorteberg et al. 2019, Dyrrdal & Førland 2019 
174 Hanssen-Bauer et al. 2015, Stensen et al. 2019, Chen et al. 2020, Eckdahl et al. 2022 
175 Woollings et al. 2018, Lupo 2020, Kautz et al. 2022 
176 Lupo 2020 



 

 

Page 56 / 176 

 

landmass, and blocking also occurs frequently over Greenland with strong downstream impacts 

on Europe associated with the negative phase of the North Atlantic Oscillation (NAO) 177. 

Recent extreme droughts over eastern Europe and western Russia are driven by the occurrence 

of prolonged blocking episodes, as well as surface processes, and have become more common 

during the 21st century. Even to this day, weather and climate models tend to underestimate the 

duration and intensity of blocking 178, especially over Europe 179. Thus, summer drought events 

and extreme rainfall may increase more than projected by large-scale climate models. For the 

ArcticHubs study region, it is not possible with the current knowledge to state with certainty 

which hubs will be affected the most by increasing atmospheric blocking events. A likely 

scenario is that there will be steadily wetter growing seasons interrupted by very dry growing 

seasons. 

 

 
177 Davini et al. 2012, Kautz et al. 2022 
178 Woollings et al. 2018, Lupo 2020, Lupo et al. 2021 
179 Davini et al. 2021 
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4 Ecosystem responses to climate change in the European Arctic 

 

4.1 Ecosystem response to long-term gradual trends (1981-2021) 

 

In this section, we review how recent climate change has affected ecosystems and wild species 

at various trophic levels and how other external factors potentially mask or override any impacts 

of climate change. This section 4.1 is not intended to describe trends for all species and 

ecosystems on land and in sea, but to present numerous representative examples from the deep 

sea to the highest peak to achieve a general overview of how gradual climate change has 

affected ecosystems during the last ca. 40 years. Red Lists for habitats and species from the 

various Nordic countries are valuable in this review. In addition, database searches for 

preparation of this section aimed to provide a balanced overview of various taxonomic and 

organismal groups – from unicellular algae via 30-tonne marine mammals to habitat types 

covering thousands of square kilometres within the ArcticHubs study region.  

 

4.1.1 Long-term vegetation greenness trends 

4.1.1.1 Review of published data 

As documented in Chapter 3, the coldest hubs of the ArcticHubs study region have, on average, 

been warming more than the boreal (forested) regions of the study region. The most recently 

updated analysis on remotely sensed tundra greenness, published annually in the Arctic Report 

Card, shows a distinct increase in vegetation greenness of Arctic tundra since 1982 180. 

Increasing greenness means that there is an increasing amount of chlorophyll per measured 

surface area, i.e., increasing primary productivity. Trends from 1982 to 2021 are strongest over 

Canadian, Alaskan and East Siberian tundra, and this is closely linked to reduced sea ice and 

warmer growing seasons. Also, the hubs Nuup Kangerlua in Greenland, Westfjords on Iceland, 

Central Spitsbergen in Svalbard, and the coastal areas of Varanger in northernmost Norway 

show significant positive trends during this 40-year period. The higher-resolution MODIS 

dataset, starting in 2000, show more mixed signals. Westfjords, Svalbard and Varanger do 

indeed show positive trends from 2000 to 2021, while large ice-free regions of south-western 

 
180 Frost et al. 2022: dataset from 1982 is the AVHRR GIMMS3g+; dataset from 2000 is the MODIS 

MCD43A4, version 6. Datasets include growing season of 2021. 
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Greenland show negative trends, and this includes the western part of Nuup Kangerlua, while 

the hub’s eastern parts closest to the continental ice sheet show positive trends. The declining 

greenness trends (negative trends are generally known as “browning”) in the western parts of 

Nuup Kangerlua may be a result of increasing post-2000 trends in winter warming damage to 

evergreen shrubs 181.  

The other hubs of ArcticHubs were not included in this analysis published in the Arctic Report 

Card, as they are not considered truly arctic from a bioclimatic viewpoint. The definition of 

arctic tundra follows the most recent framework of the Circumpolar Arctic Vegetation 

Classification (CAVM) 182. Other sources must therefore be used to assess greenness trends in 

the hubs not treated by the Arctic Report Card. We have also done separate greenness trend 

analyses for the various hubs, focussing on a single central point within each hub. These trends 

are described below, but first, we summarize the most relevant published reports on NDVI 

trends. 

For the non-tundra regions of ArcticHubs, there was a near-uniform trend of increasing 

vegetation greenness from 1982 to 2009 183. The trend was particularly strong in the conifer-

dominated lowland regions of northern Sweden and northern Finland, i.e., the eastern parts of 

the Swedish hubs Malå, Gran and Jokkmokk, and the Finnish hub Kemi (see Figure 1.1 for hub 

locations). An updated map covering trends from 1982 to 2019 of the area poleward of ca. 55° 

N show highly mixed trends for the various hubs 184. The Scandes mountain range including 

adjacent upland forests (covering western sections of most or all Swedish hubs), coastal 

sections of northern Norway including the Varangerfjorden hub, and south-eastern Iceland are 

areas with negative trends over this 38-year period. There are also smaller lowland areas in 

northern Sweden showing declining trends over this period. Both Westfjords and Svalbard 

show mixed signals, which means there are areas with declining trends adjacent to areas 

showing increasing trends. It is important to note that trends in this map are not tested for 

significance at pixel level. So, even if the trend for the whole area covered by this map is 

strongly positive and highly significant, trends for every individual pixel may not be. Year 2019 

was quite abnormal in having the lowest mean NDVI for Eurasian and North American land 

surfaces since 2014. Frost et al. 185 suggested that low NDVI in 2019 was possibly due to lag 

effects arising from cold conditions a year earlier. A year later, in 2020, circumarctic NDVI 

 
181 Weijers 2022 
182 Walker et al. 2018 
183 Buitenwerf et al. 2018, Chen et al. 2019, Piao et al. 2020 
184 Box et al. 2022 
185 Frost et al. 2020 
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reached record-high levels, this time possibly due to lag effects arising from the warm 

conditions in 2019 186. Hence, while there is a highly significant 1982-2019 greening trend for 

the entire circumpolar area north of 55° N, pixel-level trends in the map should be treated with 

caution. Significance analyses at pixel-level (see Figure 3.7 for an example of pixel-level 

trends) combined with yearly updated maps, such as the maps included in the annual report 

“Arctic Report Card”, would be valuable for interpreting trends for smaller areas within the 

larger boreal region north of 55° N.  

The higher-resolution MODIS dataset starting in 2000 show mixed trends. For the period 2000-

2018, there was indeed an overall greening of northern lands, i.e., land areas poleward of 60° 

N, but for the Nordic Arctic region the average increase per year was weaker than for the period 

1982-2009. A rather large forest-dominated area in northern Sweden, protruding into northern 

Finland, shows declining greenness trends during this period 187. Causes for this may be both 

climatic and non-climatic. Forest monitoring in northern Finland manifests that the growth rate 

of the dominant trees Scots pine (Pinus sylvestris) and birch (Betula pubescens) declined from 

2000 to 2018 188. Suggested primary agents for this decline are snow and wind break, browsing 

ungulates, nutrient anomaly, and fungal diseases. Agents of less importance include frost 

damage, scleroderris canker (= Brunchorstia disease, which is a fungal infection of coniferous 

trees), soil wetness, among others. At national level, snow is by far the most important agent 

for damage to standing forest trees in Finland. This Finnish study did not consider the impacts 

of forestry practices. 

Large boreal areas of northern Sweden (from ca. 64° to ca. 69° N) show declining remotely 

sensed greenness trends (i.e., browning) after 2000, see the MODIS vegetation greenness trends 

maps by Chen et al. and Piao et al. 189. Increasing vegetation greenness at high northern 

latitudes, including the Nordic countries, is attributed predominantly to climate change 190. 

However, there is, to our knowledge, no previous attempts of interpreting the declining 

remotely sensed vegetation greenness in Sweden and Finland that was reported by Chen et al. 

and Piao et al. 191. We have not found evidence of any weather events or climatic trends that 

could have caused this decline.  

 
186 Frost et al. 2021 
187 Buitenwerf et al. 2018, Chen et al. 2019, Piao et al. 2020 
188 Korhonen et al. 2021 
189 Chen et al. 2019, Piao et al. 2020 
190 Zhu et al. 2016, Piao et al. 2020 
191 Chen et al. 2019, Piao et al. 2020 
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On the Swedish side, there has been intensive clearfelling forestry since the middle of the 

twentieth century 192. Due to a long history and extensive impact of industrial forest 

management, only a small fraction of intact boreal landscapes remains, according to some 

studies 193. Clearfelling, i.e., industrial clear-cut forestry, is a factor to consider when trying to 

explain the abovementioned Swedish browning. The pattern of intensive clearfelling is also 

evident in Finland 194. A large body of literature on Swedish forestry practices have been 

published recently. Here, we provide a brief summary, with the obvious risk of missing out 

relevant sources. We focus on some of the recent studies that have received most interest within 

the scientific community and in the general public. A pan-European study from 2020 by 

Ceccherini et al. 195 indicated high Swedish timber harvest volumes with large geographical 

extent. Several groups of scientists, including Wernick et al. and Palahí et al. 196 pointed out 

potential errors in the estimates in the 2020 study by Ceccherini et al. In their rebuttal, 

Ceccherini et al. 197 provided an amended analysis based on the points raised by Wernick et al. 

and Palahí et al., and these amended maps confirmed the original analysis demonstrating an 

increased harvest rate in clear-cuts in Sweden and Finland during recent years, but at lower 

levels than presented in the original analysis. Breidenbach et al. 198 argued that advancements 

in satellite-based mapping led to erroneous conclusions in the original study by Ceccherini et 

al. 199. A later study from a separate research group (Zhou et al. 200) applied a combination of 

methods to assess recent changes and trends in land cover, forest harvest areas, and soil erosion 

in the Nordic countries. They found a 4 % decrease in forested areas in Sweden from 1992 to 

2018. Their spatial maps, showing transitions of forests to non-forest, largely overlap with the 

area showing declining vegetation greenness. Overall, for forest trends, they concluded that 

forest areas increased in Denmark, Finland, Norway at a similar rate, while forests in Sweden 

decreased steadily over the period covered (i.e., 1992-2018).  

The topic of forestry intensity is beyond the core scope of this report. Therefore, the topic is 

here only treated briefly as a possible explanation for the abovementioned declining greenness 

trends detected by Chen et al. and Piao et al. 201 for parts of northern Sweden and northern 

 
192 Mikusiński et al. 2021, Röstlund 2022 
193 Mikusiński et al. 2021, Svensson et al. 2019, 2020, 2022 
194 Mason et al. 2021 
195 Ceccherini et al. 2020 
196 Wernick et al. 2021, Palahí et al. 2021 
197 Ceccherini et al. 2021 
198 Breidenbach et al. 2022 
199 Ceccherini et al. 2020 
200 Zhou et al. 2021 
201 Chen et al. 2019, Piao et al. 2020 
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Finland. Overall, we may at least conclude that there is no evidence of any climatic factors 

causing the observed declines in vegetation greenness in this area. 

 

4.1.1.2 GIMMS and MODIS data analyses for the hubs in the Nordic countries 

Our own analyses for this report of GIMMS satellite imagery from the Nordic countries and 

Kola Peninsula confirm a positive trend in NDVI for the period 1982-2020, indicating an 

increase in biomass. GIMMS Maximum NDVI (Max-NDVI) increased by 0.030 (p < 0.01) 

from 1982 to 2020. This index includes data for the peak greenness around high summer for 

every single data point. On the other hand, the Time-Integrated NDVI (TI-NDVI) is an average 

of NDVI measurements from June, July, and August. TI-NDVI increased by 0.316 (p < 0.01) 

from 1982 to 2020. Thus, these two variants of remotely sensed vegetation greenness show 

nearly the same overall greening trend.  

The northern continental region of the study area showed significant increases in both Max-

NDVI (0.031, p < 0.05) and TI-NDVI (0.196, p < 0.05) for the 1982-2020 period. However, 

not all subregions follow this greening trend. In the northern oceanic region, the trend changes 

for both Max-NDVI and TI-NDVI were smaller (0.007 and 0.016) than the overall trend, and 

for this subregion, trends were not significant. The southern oceanic region had a significant 

positive trend for TI-NDVI (0.185, p < 0.01), whereas trends for Max-NDVI were not 

significant. Altogether, these results indicate trends along latitudinal and oceanity gradients. 

For the ArcticHubs study region in northern Finland, Sweden, and Norway + Kola Peninsula 

we have also analyzed MODIS data 202. We found patterns of reduced MODIS leaf area index 

(LAI) for the years 2015-2018 and NDVI (2015-2021), similar to those reported above 203. 

Buitenwerf et al. suggested that this decline was due to herbivory by reindeer and geometrid 

moths, but since this reduction is mainly found as reduced LAI of trees (canopies) in spruce 

and pine forests, herbivory by reindeer and moths cannot be the cause of declining LAI; see 

treatment above of potential forestry impacts. 

Using MODIS for the period 2000-2021, we estimated the trends of Maximum NDVI (Max-

NDVI), and summed NDVI for the different hubs over the DOY 204 period 145-241. All hubs 

showed increasing trends of Maximum NDVI and Summed NDVI for the period 2000-2021, 

albeit trends for some of the hubs were not significant (Supporting information 1, Chapter 7.1). 

 
202 See Chapter 2 for description of methodology 
203 Buitenwerf et al. 2018, Chen et al. 2019 
204 DOY = day of year (1 January = Day 1). 
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The hubs Inari and Kovdor showed the highest increase in summed NDVI over the DOY period 

145-241. Inari is shown in Figure 4.1, as an example. 

 

Figure 4.1. June-August summed NDVI in Inari for the period 2000-2021. Trend = 0.445 (i.e., 

average increase of 0.020 per year), p < 0.01. The year 2020 deviated largely from the overall 

trend. 

4.1.1.3 NDVI trends in Svalbard 

For the Svalbard Hub, the time-integrated NDVI (TI-NDVI) from onset of growth to time of 

peak (OP-NDVI) showed high correlation with plant productivity measurements in the field 205. 

Our own analysis for the Longyearbyen area shows that the OP NDVI increased with about 20 

% during the last 22 years. OP NDVI during this study period correlated well with mean July 

temperature (p < 0.001, r2 = 0.40, n = 22). On average, for the entire Svalbard archipelago, the 

linear trend for onset of growth for the 2000 to 2020-period is 12 days earlier onset (0.57 days 

per year). However, there are regional differences. On the west coast, and for parts of the island 

Edgeøya, there is a trend of more than two weeks earlier onset, and most of these linear trends 

is also significant (p < 0.05). Slightly slower advance in onset of growth (around 7 days) were 

detected for the large valleys (Adventdalen, Reindalen and Colesdalen) on Nordenskiöld Land. 

For the Longyearbyen area, the onset of growth occurs about 8 days earlier at present as 

 
205 Karlsen et al. 2018 
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compared to 21 years ago. This linear trend is close to significant (p = 0.056). The correlation 

between mean June temperature and onset of growth in Longyearbyen is high and significant 

(p = 0.02, r2 = 0.25, n = 21).  For the last day with snow cover in spring in the Longyearbyen 

area, the MODIS data shows a weak and non-significant advance of 3 days for the 2000-2020 

period. Time-integrated NDVI from onset of growth to time of peak NDVI (OP NDVI) is 

strongly correlated with field-measured plant productivity 206. OP NDVI in Longyearbyen area 

has increased by ca. 20 % during this 21-year period. OP NDVI is well correlated with mean 

July temperature (p < 0.001, r2 = 0.40, n = 22). The end of the growing season, which is 

identified remotely through the initiation of autumn yellowing, has advanced with ca. 3 days 

over the 2000-2020 period. Hence, the length of the growing season in the Longyearbyen area 

has only slightly increased during this period. This is in line with other arctic research, showing 

that an earlier onset of growth in spring leads to an earlier cessation of growth in autumn 207; 

see section 3.1.3 for a description of this phenomenon. 

4.1.1.4 NDVI trends in Iceland 

The overall mean MODIS NDVI for Iceland based on the entire 22-year time series (2000-

2021) of MODIS is 0.37. Figure 4.2 shows the overall mean NDVI for each pixel. Low NDVI 

values are displayed in red, and high values are in green. Unsurprisingly, the Central Highlands 

and other alpine regions show lower NDVI values (the lowest value being -0.14, which 

indicates no vegetation cover), and the lowland areas show higher values (the highest being 

0.83, which indicate high photosynthetic activity and dense vegetation cover, or agricultural 

fields).  

 

 
206 Karlsen et al. 2018 
207 Zona et al. 2022 
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Figure 4.2. Overall mean NDVI for Iceland (2000-2021) for the months July, August, and 

September. 

 

The results for the MODIS-based NDVI trend, as expressed in units per year, are shown in 

Figure 4.3. The analysis indicates an overall slightly positive trend with a mean change of 0.002 

NDVI units per year (i.e., 0.2 % yearly increase). The standard deviation is also 0.002. The map 

shows the greatest negative trends in the more mountainous regions, particularly in the 

Tröllaskagi peninsula, and around Eyjafjallajökull, which may at least partially correlate with 

the ash deposition from the 2010 eruptions. There are also some slightly negative trends in parts 

of the lowlands. A positive trend is particularly noteworthy in many areas around the sand 

plains in the south as well as around the glacier margins, where a dynamic and evolving 

ecosystem caused by receding glaciers likely accounts for this NDVI increase.  
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Figure 4.3. Average yearly NDVI trend (2000-2021) expressed as change in NDVI units per 

year. 

 

The bar graphs in Supporting information section 7.2 show the results of the zonal statistics 

calculated for the gain coefficient based on region. The south-eastern (SE) region has the 

highest, positive mean change with 0.0040 NDVI units/year, followed closely by the 

southwestern region (SW) with 0.0037 units/year.  

 

4.1.2 Species distribution change on land 

It is generally a complex task to elucidate the drivers of changes in species range boundaries. 

Numerous non-climatic factors are involved in the shaping of species distribution ranges, but 

climate change is becoming a dominant factor – especially for poleward and upward range 
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shifts 208. Still, there is extremely large variation in the rates at which the range boundaries of 

individual species are moving 209.  

Red Lists of species and habitats document which environmental pressures that have had the 

strongest impact on nature and biodiversity in recent decades. The evaluations of the 2021 Red 

List expert committee of Norway show that 89 % of all red-listed species in the country were 

threatened by human use of land areas, rivers, lakes, and marine waters 210. The committee’s 

evaluation is that climate change is the sole factor, or one of the factors, for red-list status for 

8.6 % of all species in the Red List. These numbers largely reflect the global assessments of 

major threats to biodiversity, which, according to the Intergovernmental Science-Policy 

Platform on Biodiversity and Ecosystem Services (IPBES), are land use, harvesting, climate 

change, pollution, and alien species 211. 

A unique analysis of a nationwide Finnish dataset on a total of 1,478 species of birds, mammals, 

butterflies, moths, plants and phytoplankton, covering the years from 1978 to 2017, shows how 

species distributions respond to temperature, precipitation, snow cover and the North Atlantic 

Oscillation 212. They found that while species turnover among decades was limited, the relative 

position of species within their climatic niche shifted substantially, and that a greater proportion 

of species responded to climatic change at higher latitudes, where changes were stronger. While 

the editorial commentary published in the same issue purports that this Finnish study considered 

underlying (non-climatic) variation in factors such as land use 213, this was not clear from the 

article itself. The article does not describe any non-climatic factors that are widely known to 

impact biodiversity in Finland, such as forestry, and other types of land use, and eutrophication 

214. Instead, the study applies spatial latent variables, which can account for the spatial 

autocorrelation that may arise from, for example, environmental covariates left unmeasured. 

The authors thus conclude that “further explicit analyses are needed to understand the combined 

effects and potential interactions between climate and land-use changes”. The potential 

interactions between climate and land-use changes, including legacy effects 215, will be 

discussed further in the next section 4.1.2.1. 
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4.1.2.1  Vegetation 

It has been purported that the accelerated increase in plant species richness on mountain 

summits in Europe is a response to climate warming 216. However, this study did not provide 

any direct evidence of a temperature-induced increase in plant species richness. While increase 

in plant diversity from the late 19th century until the early 21st century took place during a period 

of warming, this was not the only environmental parameter that changed during this time 

interval. Alpine and other remote natural areas have until recently been widely applied as 

summer grazing ranges for domestic animals, i.e., sheep, goat, cattle, and horses, while in a few 

regions, for example the Faroe Islands, Iceland, and parts of Norway, this practice is still 

prevailing 217.  

The modernization and industrialization of European agriculture has reduced the need for 

extensive use of alpine and other remote areas as summer pastures 218. This process, which has 

been termed land abandonment, has facilitated a rapid increase in plant biomass, including 

woody successions, at both low and high altitudes 219. In Norway, domestic sheep is still 

abundant in the seminatural (non-cultivated) landscapes around farms, while domestic goat has 

almost disappeared from the Norwegian agricultural landscape. The number of goats today is 

only 18 % of the maximum, which occurred in the 1930s 220. For hundreds of years, goats were 

roaming freely in the Norwegian landscape, normally above the timberline (Figure 4.4). As 

goats are good climbers, they reach to the highest mountain peaks. Nowadays, the rapidly 

regrowing cultural landscapes near farms offer sufficient forage, so viewing goats in the alpine 

landscape is now a rare event. Goat is an excellent browser – as opposed to sheep, which is a 

grazer. While grazers primarily feed on grass and other lower vegetation, browsers feed on any 

vegetation, even woody stems of shrubs and trees, and remove large parts of the vegetation. 

Hence, a mountain landscape shaped by decades of extensive goat browsing has a very barren 

appearance, and release of goat browsing pressure has a rapid and massive impact, affecting 

both biomass and biodiversity from seashore to the highest peaks 221. Thus, explaining 

increasing alpine biodiversity over the last 100-year period is fully possible even without 

placing it in a climate change context. 
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Figure 4.4. Goats in Norway 1860-2020. See text for source. The photograph is a reproduction 

of a postcard from a mountain pass in western Norway (Normanns kunstforlag A/S) 222. Year 

unknown, but probably from the 1920s. Disclaimer: Before this photo is reproduced in any public report, permission must 

be applied. 

 

These types of culturally induced changes have indeed taken place in many of the focal sites in 

ArcticHubs. For Finnmark in northernmost Norway (including the hubs Kvalsund-Kautokeino 

and Varangerfjorden), a multifactorial assessment of forest fluctuations over a 100-year period 

(1910-2015) concluded that human activities (logging and regulation of the abundance of 

domestic herbivores, i.e., goat, sheep, cattle – and semi-domestic herbivores, i.e., reindeer) were 

the primary drivers of fluctuating forest cover 223. In fact, the most rapid increase in deciduous 

forest establishment took place during a period of slight summer cooling. A similar forest 

expansion during a period without any temperature increase has taken place at Kola Peninsula 

224. Similar legacies of historical human activities affect woody plant dynamics throughout the 

Arctic 225. Normand et al. 226 strongly advocate that one first must explore the recent and longer-

term impacts of human activities such as hunting, herding, fire, extraction, and agriculture. Only 

by knowing these impacts, one can assess if there are any unequivocal impacts of climate 

change on recent vegetation dynamics.  

Thus, since the use of the cultural landscape has been reduced so dramatically during the last 

50-100 years, it is not straightforward to state with confidence that any latitudinal or altitudinal 

range expansion of plant species are primarily due to warming. An additional complicating 

 
222 Statistics retrieved from Statistics Norway 2022; image retrieved from Nordmøre museum 2021 
223 Tømmervik et al. 2019 
224 Mathisen et al. 2014 
225 Hofgaard et al. 2013, Løkken et al. 2019, Eide et al. 2021, Harr et al. 2021, Stark et al. 2021 
226 Normand et al. 2017 



 

 

Page 69 / 176 

 

factor is that climatic change is not purely stimulatory to plant growth. The cold seasons have 

been warming more than the growing season, resulting in disturbance of hibernation in plants 

and often leading to large-scale visible damage (see sections 3.2 and 4.2).  

Climate change is not only about temperature. Some areas are becoming drier, but all hubs of 

the ArcticHubs study region are becoming wetter; see Chapter 3. Increasing humidity has 

contrasting impacts on potential species distribution range than warming. Some of the drier 

regions of the Nordic Arctic Region have become wetter in recent decades. It has been 

suggested that increasing wetness is a primary reason for the local range expansion and overall 

increase in abundance of some vascular plants and mosses to the mountain plateau 

Finnmarksvidda in northernmost Norway 227. This area received 81 % more precipitation during 

the period 1991-2000 as compared to the period 1931-1960. The short shrub bilberry 

(Vaccinium myrtillus), the herbs dwarf cornel (Chamaepericlymenum suecicum) and arctic 

starflower (Lysimachia europaea), and the mosses splendid feathermoss (Hylocomium 

splendens), and red-stemmed feathermoss (Pleurozium schreberi) were among the plants that 

increased in abundance during this period. The increase of these plants is also possible to 

explain by non-climatic factors, especially increasing reindeer grazing pressure that led to 

reduced abundance of landscape-wide mat-forming lichens, facilitating the expansion of 

vascular plants and mosses. The most plausible explanation in this case is that the increase of 

plants was a combination of changes in humidity and grazing pressure.  

Regarding warming within the ArcticHubs region, some of the more obvious vegetation 

responses are taking place in alpine areas where glaciers and snowbeds are declining due to 

longer and warmer summers 228. Retreating glaciers facilitate short-distance dispersal of pioneer 

organisms, mainly consisting of high-alpine lichens, bryophytes, and a small selection of 

vascular plants, to recently deglaciated terrain 229. Snowbeds (Figure 4.5), palsa mires and other 

snow-and-ice-dependent habitat types are therefore considered as threatened (see further 

treatment in section 4.1.4). Many species preferring snowbeds and other snow-related habitats 

are also threatened. For example, Phippsia algida, commonly known as ‘ice grass’ or ‘snow 

grass’, is considered as threatened (VU) in Finland, Norway, and Sweden, and as near 

threatened (NT) on Svalbard 230. While the red list status of this species in these countries 
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primarily relies on expected decline soon, P. algida already suffers from combined 

temperature- and drought-induced population reduction at some alpine sites 231. 

 

Figure 4.5. An arctic-alpine snowbed landscape, Seiland National Park, Finnmark, Norway. 

The glacier Seilandsjøkelen in the background. Photo: Karl-Otto Jacobsen ©, Norwegian 

Institute for Nature Research. 

 

Most vascular plants on the Icelandic Red List of species are threatened by non-climatic factors 

232. Most species on this Red List have very few populations with few individuals in each 

population. One of these species is the leafy saxifrage Micranthes foliolosa, which grows in 

upland, alpine areas of northern Iceland, with a preference for snowbeds. The Red List states 

that it is threatened (VU) because of a restricted distribution range in a habitat that will change 

rapidly with increasing impacts of climate change. Thus, although not stated explicitly, it seems 

that (future) climate warming is the primary reason for the red listing of this species in Iceland.  
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4.1.2.2  Animals 

Animals generally migrate faster than plants. Thus, range shifts or range expansions linked to 

climate change are more widely observed in certain groups of animals than in plants. Some 

birds breeding in boreal and arctic environments show population increase and expansion of 

breeding area. This includes several species of waders, geese, and swans. Earlier onset of 

spring, wetter conditions and longer snow-free period in autumn are considered as primary 

reasons for this increase. These climatic changes have resulted in, for example, earlier onset of 

plant growth, improved forage resources, more snow-free space for nesting, and a longer snow-

free period after nesting increasing the fledging probability of chicks. However, non-climatic 

factors also contribute to increasing trends for these species, for example reduced hunting 

pressure, and increasing abundance of waste grains on agricultural fields at spring stopover 

sites 233, and it is generally a cumbersome task to differentiate the relative importance of 

climatic vs. non-climatic factors for population increase. Overall, most bird species in the 

Nordic region show stable population trends 234. On the other hand, grouse species may suffer 

from the asymmetric spring warming 235. As willow grouse is a keystone species in the arctic 

and alpine regions (similar to the keystone role of lemming), declining population sizes will 

have ecosystem-scale impacts. 

For sea birds, see section 4.1.3. 

Invertebrates are another group showing expanding distribution ranges. Here, we discuss some 

examples of expanding invertebrates. Within the ArcticHubs study region, among the most 

unwanted expansions is the increasing abundance and distribution of ticks, especially of the 

castor bean tick (Ixodes ricinus) that suck blood from mammals including humans 236. This has 

led to an increase in the tick-borne diseases Lyme disease (borreliosis) and encephalitis (TBE) 

in humans in the Nordic countries and elsewhere. While it generally has been assumed that 

climate change is a primary driver of increasing tick abundance and distribution ranges 237, a 

recent study suggests that human-induced land cover change is the primary driver, as it has 

resulted in increased habitat suitability for ticks 238. For the distribution of Lyme borreliosis, 

this study shows that last year’s summer temperature is a controlling factor. Thus, the increase 

 
233 Jensen et al. 2014, Shimmings & Øien 2015, Simonsen et al. 2016, Fox & Madsen 2017, Lefebvre et al. 2017, 

Lindström et al. 2019, Tombre et al. 2019, Doyle et al. 2020, 2021, Layton-Matthews et al. 2020, Stokke et al. 

2021a, Heldbjerg et al. 2022 
234 Lindström et al. 2019 
235 Ludwig et al. 2006 
236 Talleklint & Jaenson 1998, Jore et al. 2011 
237 Jore et al. 2014, Laaksonen et al. 2017, Hvidsten et al. 2020, De Pelsmaeker et al. 2021 
238 Leibovici et al. 2021  



 

 

Page 72 / 176 

 

of ticks and tick-borne diseases is a result of a combination of landscape change and climate 

change. Cervids (moose, red deer, roe deer) are hosts for ticks. Stigum et al. 239 conclude that 

an overall extensive population increase of cervids in northern Europe, including Norway, 

Sweden, and Finland, have contributed to the expansion of ticks and to increasing infestation 

rates of domestic sheep with tick-borne diseases. It does not mean that all species of cervids 

show increasing trends in all countries. For example, in Sweden, the post-hunt moose 

abundance decreased by 15 % from 2012 to 2020 240. 

Outbreaks of geometrid moths occur on regular intervals within the study area, especially in 

the Nordic downy birch (Betula pubescens) forests. Geometrid moths, in particular winter moth 

(Operophtera brumata), have extended their distribution range northwards 241. Winter moth is 

even expanding into shrub tundra in the Nordic Arctic Region 242. The dominating theory is that 

climate warming is the cause for these expansions, primarily due to increased winter survival 

of eggs from fewer winters with lethally cold temperature, i.e., periods with temperature below 

ca. −36 °C 243. In Greenland, the noctuid moth Eurois occulta has outbreaks at regular intervals 

feeding on green plants in such extent that outbreaks are easily visible as brown, leafless patches 

in the landscape. However, data are currently not sufficient to verify any climate-induced 

increase in range of this species 244. 

Yet another invertebrate pest that is expanding rapidly in northern regions is the deer ked, also 

called deer fly (Lipoptena cervi). It sucks blood from cervids, especially moose, deer, and 

reindeer and occasionally bites humans. Its rapid expansion is primarily a result of the rapidly 

increasing populations of cervids and not of climate change per se 245.  

Climate change may be a minor driver of increasing populations of cervids in northern Europe, 

for example by reduced snow depth during winter, which facilitates movement and reduces 

hunting pressure from lynx and other predators. However, in many northern European 

countries, moose and red deer were at the brink of extinction during the 19th century due to 

overexploitation. Reduced human hunting and cessation of traditional agricultural practices 

(see treatment above) are therefore considered as the most important factors for the massively 
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increasing populations of moose, roe deer and red deer in northern Europe 246. The increased 

populations of moose may have a significant effect on the number of deciduous trees in the 

forests 247. Our own unpublished results from a high-density moose area (Pomokaira, 

Sodankylä, in northern Finland) show strikingly contrasting patterns of deciduous trees – with 

high abundance in fenced areas and near-complete absence in unfenced areas. 

Population increases for numerous terrestrial wild mammalian species other than cervids are 

also explained primarily as a direct effect of human impacts, especially reduced hunting 

pressure, increased forage resources due to reduced haymaking and reduced number of 

domestic animals in the wild, legacies of human-induced establishment of mammalian 

populations at new sites, and a generally improved environmental management in recent 

decades.  

In alpine areas, rodents, in particular lemming, are keystone species having strong influence on 

lower and higher trophic levels. During lemming and vole outbreaks, vegetation is heavily 

grazed and turned to such extent that the area of outbreak is easily identified by satellites 

monitoring vegetation greenness 248. It takes many years for vegetation to recover to previous 

states after such outbreaks. Rodents are also important food resource for birds and the arctic 

fox. Lemming is closely dependent on snowbed habitats, as most winter nests for lemming are 

found in snowbeds 249. As warmer winters lead to increasing disturbance to the snowpacks in 

snowbeds, this has devastating impacts on winter survival of lemming 250. Also, non-snowbed 

overwintering populations of small rodents are severely affected by ongoing changes to the 

snowpack 251. Thus, the state of small rodent populations is evaluated to be low at least in 

Norwegian alpine areas 252. Nevertheless, lemming and alpine voles are considered as least 

concern (LC) by the Red List expert committees in all the Nordic countries. After a period with 

rather few outbreaks, in recent years, lemming has had several large outbreaks in Scandinavian 

mountains.  

The arctic fox (Vulpes lagopus; see photo on p. 9) is one of the predators that is largely 

dependent on small rodents. It is threatened in Finland (Critically endangered – CR), Sweden 

(Endangered – EN), Norway (EN), but not in Iceland and Svalbard (Least concern – LC). 

Extensive hunting and poisoning led it to the brink of extinction, and it was in need of total 
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protection. It was protected in Finland, Sweden, and Norway between 1930 and 1940, but it did 

not immediately respond with increasing populations. Breeding programmes have helped 

expanding the population, which, in Norway, has resulted in an improvement of the Red List 

status – from CR in 2015 to EN in 2021. Still, recent climate change is assumed to have had a 

negative impact on the arctic fox, primarily by dampening the outbreaks of its most important 

food resource, namely small rodents (see treatment above). In Finland, the arctic fox has not 

had successful breeding for more than 20 years, until a recent successful denning was observed 

in northernmost Finland in July 2022 253. The Nordic Red List committees expect that climate 

change will have stronger negative impacts on the arctic fox during the next decades. 

From the high-Arctic regions of the study area, we provide some examples from Svalbard and 

Greenland. The polar bear (Ursus marinus) is a global symbol of climate change. The species 

is found within two of the hubs in this project, namely Svalbard and Nuup Kangerlua. In both 

places, the polar bear is considered as being Vulnerable (VU) 254. While hunting was the main 

regulatory factor for a long time, reduced sea ice due to arctic warming is having increasing 

impact on polar bear. The population on Svalbard has been stable, but it is on the Red List 

primarily in accordance with the D1 criterion, meaning very few reproductive (< 1,000) 

individuals. In Greenland, it is red-listed based on criterion A3c, meaning an expected reduction 

over the next ten years or three generations caused by shrinking distribution area and/or reduced 

habitat quality, and this is linked to reduced sea ice.  

Arctic wild reindeer is of Least Concern (LC) both in Svalbard and Greenland, except for the 

subspecies East Greenland caribou (Rangifer tarandus eogroenlandicus) which has been 

extinct (Ex) in Greenland since 1900. Despite the fact that Svalbard reindeer (Rangifer tarandus 

platyrhynchus) suffer from high mortality in some winters, the population has grown from ca. 

1,500 animals in 1958 to ca. 22,435 animals in 2018 255. Unregulated hunting was the main 

cause of the very low population in 1958. The population was probably even lower at the time 

of protection. It has been protected since 1925. Svalbard reindeer (Figure 4.6) has until recently 

had no natural enemies. However, it has been documented that some polar bear individuals 

have specialized in reindeer hunting 256. Their shift to a more terrestrial diet is linked to climate 

change; as it is a response to reduced sea ice, and hence, reduced capability to hunt seals. While 

threats from future climate change is considered in the red-list evaluations of numerous other 

species in Svalbard, the ongoing and future climate change impacts is not explicitly mentioned 
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for Svalbard reindeer in the Red List for Svalbard 257, which is surprising given the rapid 

ongoing climate change on the archipelago. 

To summarize, this overview (section 4.1.2 including both subsections) of changes in species 

distributions on land underlines the complexity of terrestrial ecosystems; changes are the result 

of numerous internal and external drivers, pressures and stressors, of which climate change is 

only one of many factors. Impacts of climate change on species distributions are most evident 

in the high-Arctic, while climate change impacts are more elusive towards more populated 

regions where historical and current land use practices largely confound or mask climate change 

impacts.  

4.1.3 Marine species distribution change 

Harvesting, environmental pollution and other human activities do indeed affect life in the seas. 

Despite this, the impacts of climate change are more evident on distribution of species in the 

marine ecosystems than in terrestrial ecosystems of the ArcticHubs region. Despite 

anomalously cool sea surface temperature during summer 2021 in parts of the ArcticHubs study 

region (Norwegian Sea, Barents Sea, Bothnia Bay, Baffin Bay, Davis Strait – but not western 

North Atlantic), there is a strong warming trend of northern seas. Linear trends for the period 

1982-2021 show significant warming of up to 0.1 °C per year within the ArcticHubs study 

region. The warming is closely linked to declining sea ice 258.  

Several Atlantic fish species are migrating northwards. One such example is the Atlantic 

mackerel (Scomber scombrus), which was recorded in Isfjorden on Svalbard in September 

2013. This was the first record of this species in Svalbard seas 259. This represented a rapid 

northward expansion of ca. 5 latitudinal degrees of this species’ distributional range. Atlantic 

mackerel has in recent years also become more common around the Faroe Islands and Iceland 

and has even been caught in the waters east of Greenland. Mackerel can swim fast over 

extended periods. Hence, it can quickly adopt to warmer waters. During a period of only eight 

years (2006-2013), six new species of fish were recorded in Svalbard waters. The first year in 

this period, 2006, had anomalously warm sea temperature, and during this year three of the six 

new species were recorded. These three species were capelin (Mallotus villosus), haddock 

(Melanogrammus aeglefinus), and snake pipefish (Entelurus aequoreus). Later, cod (Gadus 

morhua) and Atlantic herring (Caprea harengus) were recorded in 2008 and 2012, respectively.  
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Similar warming impacts on fish communities are recorded elsewhere at high northern latitudes. 

Previously characterized by arctic fish communities, the Barents Sea is becoming dominated 

by boreal fish species 260. Even deep demersal fish communities down to 1000-m depth are 

changing as a response to warming seas, a study from East Greenland shows 261. As a result of 

shorter ice season, Atlantic cod has recently migrated into the historically ice-rich Ilulissat 

Icefjord on the northwestern part of Greenland 262. 

Warmer sea water has also promoted range extensions by Arctic benthos. This took place during 

the early 20th century warming period of the eastern North Atlantic, and it is occurring once 

again during the current warming trend 263.  

For a pelagic species like mackerel, changing sea temperature may thus expand or contract its 

distributional area. Demersal species like cod (Gadus morhua), in contrast, are more locked to 

smaller areas and tend to be split into separate stocks within these areas. If environmental 

conditions in one of these areas become too challenging, the entire stock in this area may perish. 

For cod, the temperature at the time of spawning is a critical constraint since too warm waters 

may prevent successful spawning. This is a matter of concern for the two cod stocks inhabiting 

Faroese waters, since these waters are already close to the upper tolerance range for the 

temperature at the time of spawning in spring. The exceptional warming during the early years 

of the 21st century has been suggested as one possible cause of a long-term decline of the Faroe 

Bank cod stock 264. Another potential negative impact of sea temperature increase in Faroese 

waters is its effect on the overwintering phase of sand eel (Ammodytes spp.; also known as sand 

lance). This species group is a key link between lower trophic levels and commercially 

important fish stocks (e.g., cod) as well as sea birds. During winter, sand eel remains buried in 

the sediment, relying on stored fat reserves and these reserves have been found to decrease with 

increasing winter temperature 265. Increasing sea temperature during winter and spring may thus 

have both direct and indirect negative impacts on fish species of great importance for the 

Faroese hub. 

The poleward migration of benthos and fish strongly influences sea birds that are reliant on 

fish. Several previously highly populated sea bird hotspots in Iceland and Norway have become 

abandoned, and some bird colonies have moved into urban areas 266. The world’s largest colony 
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of Atlantic puffin (Fratercula arctica) in Iceland has recently experienced a strong decline. A 

recent study revealed strong negative correlations between puffin productivity and sea surface 

temperature 267. A study from 2015 on Norwegian seabirds suggest that there are two main 

reasons for the declining or collapsing seabird populations. There is increased predation in the 

seabird colonies from avian and mammalian predators, and ecosystem changes are affecting the 

availability of prey 268. As shown in the previous paragraphs, warming seas are an important 

factor for these ecosystem changes to prey.  

However, increasing populations of avian and mammalian predators may primarily be a result 

of wildlife management. For example, the population of white-tailed eagle (Haliaeetus 

albicilla) in the Nordic countries has increased substantially during the most recent 20-year 

period, primarily due to reduced killing by humans 269. White-tailed eagle is, along with great 

black-backed gull (Larus marinus) and raven (Corvus corax) the fiercest avian predators of sea 

bird chicks in cliffs.  

Sea birds searching for food along the ice margin are more directly impacted by climate change 

and its impacts of reduced sea ice. The ivory gull (Pagophila eburnea) is one example. It is 

Vulnerable (VU) in both Svalbard and Greenland. The Svalbard-breeding population has shown 

a 40 % decline over a short period (2009-2019) 270. 

High-Arctic marine mammals are also threatened by warmer waters and declining sea ice 

extent. Ringed seal (Pusa hispida) is a signature species of the arctic sea ice, as it is the only 

seal in the European Arctic that can maintain breathing holes through thick ice. While it is of 

Least Concern (LC) in Greenland, it is Vulnerable (VU) in Svalbard due to the retreating sea 

ice; the sea ice season in the northern Barents Sea has been reduced by 20 weeks during the 

most recent decades 271. Ringed seal also lives in Bothnia Bay and the Finnish Lake Saimaa 

where the seal takes advantage of the snow-covered ice that develops every winter. The 

Bothnian population (ssp. botnica) is considered as being of Least Concern (LC) on the Swedish 

side and as being Near Threatened (NT) on the Finnish side, while the freshwater population in 

Lake Saimaa (ssp. saimensis) is considered as Endangered (EN) 272. Climate change is one of 

several factors for the red listing of the Finnish populations. 
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The Greenland right whale (Balaena mysticetus, also known as bowhead whale and Arctic 

whale) can break through thick sea ice. It feeds on the rich zooplankton communities that 

develop in arctic waters. Hunting nearly brought this species to extinction. The North Atlantic 

population is considered as EN (Svalbard) and VU (East Greenland) 273. These high Red List 

statuses are not only due to historic hunting; the species is expected to respond negatively to 

warmer oceans and reduced sea ice. Increased marine noise is another stressor that is expected 

to increase with increasing arctic marine shipping.  

The narwhal (Monodon monoceros) is another iconic arctic whale associated with sea ice. It 

spends the whole life in drift ice and prefers waters with up to 90 % ice cover 274. The small 

Svalbard population is considered as VU, while the much larger Greenland populations are 

considered as EN 275. Like the Greenland right whale, narwhal is expected to respond negatively 

to warmer oceans, reduced sea ice and increasing marine noise. 

The harbour seal (Phoca vitulina) is a widespread temperate-to-arctic species that is expected 

to expand northwards and increase its population size with ongoing arctic warming. In 

Svalbard, it is expanding, but since its population size is still below 2,000 individuals it is 

considered as Near Threatened (NT) 276. In Greenland, the harbour seal was hunted almost to 

extinction, but is now protected by law. It is considered as Critically Endangered (CR), but 

there is expectance that the population will increase, and that the species will benefit from 

climate warming 277. The Icelandic population of harbour seal declined by 72 % from 1980 to 

2018 and is considered as critically endangered (CR). The main reasons for this decline were 

traditional hunting, by-catches in fish nets, and derogation hunting to protect salmon 

populations entering rivers 278. Seal hunting is now illegal in Iceland, and a special permit is 

required before any hunting can be undertaken. It is less likely that the Icelandic population 

will respond positively to the ongoing warming, as Icelandic waters for centuries have had the 

ideal temperature conditions for this species. 

Overall, we can conclude that a massive biodiversity change caused by warming seawaters is 

ongoing, and this change will be even more pronounced as the northern seas become even 

warmer. Increased application of species monitoring, environmental management, and 

protective measures will be required to dampen the negative effects of ocean warming. 
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4.1.4 Terrestrial and marine habitat and ecosystem change 

Species and their ecosystems are under constant change from a concert of external pressures. 

As shown above, climate change is only one of numerous factors causing changes to species 

and ecosystems.  

The expert committee for threatened habitat types in Finland concludes that recent climatic 

change (to 2018) has had only minor impact on Finnish habitat types 279. The most important 

factors for habitats being threatened are forestry, drainage, clearing of areas for arable land, 

construction, and eutrophication. The only exception is the northern Finnish fell region, i.e., 

upland habitats in northern Finland mostly above the climatic limit for forest growth, but also 

including mountain birch forest with scattered stands of Scots pine, spruce, and aspen. Thirty-

one fell habitats were considered as threatened by climate change, ten of these with high 

significance, twelve with “rather high significance” and the remaining nine with “rather low 

significance”. The habitats adversely affected by climate change are all restricted to snowbeds, 

snow patches and permafrost soil and peat. This includes the palsa mires, which have a core of 

permafrost that leads to a dome-shaped or plateau-shaped structures in wetlands.  

The Swedish assessment of threats to habitats and species concludes nearly identically as the 

Finnish assessment; in Sweden agriculture, forestry, and exploitation of lands for infrastructure 

are the main threats to habitats 280. These factors are a threat to ca. 48 %, 32 % and 21 %, 

respectively, of the total number of threatened habitats. In comparison, climate change is 

considered a threat to ca. 6 % of all threatened habitats. As in Finland, the habitats considered 

threatened by climate change are primarily restricted to the alpine zone.  

The expert committee for threatened habitat types in Norway concluded in 2018 that climate 

change is one of the factors leading to red list status for a total of 72 habitat types, i.e., 25 % of 

all red-listed habitat types 281. The expert committee’s evaluation is that temperature is by far 

the most important climate change element for habitat reduction. It is affecting, or will affect, 

56 of these 72 habitat types. The second most important factor is prolonged growing season, 

affecting 15 habitat types. “Slow, but significant reduction” is by far the most widely used term 

for describing the impact of climate change. Only for one habitat, the term “rapid reduction in 

area” was applied. This was for a shallow marine habitat dominated by sugar kelp (Saccharinia 
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latissima), which has experienced a severe reduction over a 50-year period 282. This habitat is 

found in the marine waters of the Egersund hub and elsewhere in the Skagerak and North Sea. 

The committee also points out that nutrient enrichment is an important factor for the kelp 

decline, while increasing sea water temperature may become the most important factor in the 

future. Thus, the term “rapid reduction” for this habitat primarily apply to the consequences of 

recent nutrient enrichment. 

The group of Norwegian habitats threatened by a climate-induced slow, but significant 

reduction includes many of the same habitats as are threatened in Finland and Sweden, for 

example palsa mires and snowbed habitats.  

These same habitats are also considered threatened by climate change according to the EU’s 

expert committee for threatened habitats 283. Palsas (Figure 4.7) are specifically treated, while 

snowbeds are indirectly included in the habitat “snow pack”, which is considered as vulnerable 

(VU) in the EU Red List.  

Overall, the assessment of climate change as a threat to habitat types, as expected, strongly 

correlate with the red lists for species; it is the coolest habitats and their species that are 

considered most threatened by climate change. 

 

 

 

 

 

 

 

Figure 4.6. Svalbard reindeer 

(Rangifer tarandus ssp. 

platyrhynchus). Photo: Jarle W. 

Bjerke © 
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Figure 4.7. Thawing palsa dome near Iešjávri, along the reindeer migration route in the 

Kvalsund-Kautokeino hub. Photo: Jarle W. Bjerke © 
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4.2 Impacts of changing frequency of extreme weather events on ecosystems 

and keystone species  

 

This section focusses on natural ecosystems and their species. While the reindeer is part of the 

natural ecosystems, it has become semi-domestic within the study region of ArcticHubs. 

Impacts on reindeer and reindeer husbandry are therefore treated in Chapter 5. 

The nature of extreme events and impacts on natural ecosystems and society have recently been 

thoroughly reviewed 284. This summary of impacts of changing frequency of extreme weather 

events on ecosystems and keystone species largely rely on recent reviews and supplement with 

a few additional sources.  

 

4.2.1 Cold seasons 

While extreme freezing events historically was a factor damaging natural ecosystems and 

limiting human expansion, extreme warm events during the cold seasons are increasing in 

frequency, with major impacts on nature and society. Winter is the period for hibernation for 

most organisms overwintering in winter-cold land areas. Warm weather events raise 

temperature to well above freezing, reduces and compacts the snowpack, and disturb 

hibernating ecosystems and their species 285. When such warm events take place in late winter, 

they are often termed as “false spring” 286. Temperature can change extremely rapidly during 

such events. On Svalbard (79° N), temperature during a mid-February warming event rose by 

28 °C within 49 h, from −23° C to +5° C 287. 

Warming events lead to complete or partial snowmelt. When temperature returns to freezing, 

the partially melted snow turns into a very hard and icy snowpack, or into block ice, with 

devastating consequences for lemming and other rodents and small invertebrates living in the 

subnivean space, and for mammalian herbivores (musk ox, reindeer, etc.) that are reliant on 

foraging on vegetation underneath the snowpack 288. Ground-ice and hard snowpack are also 

detrimental to vegetation. The insulation properties of ice and hard snowpacks are much lower 

than within an intact snowpack, exposing subnivean organisms to near-ambient fluctuations in 
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temperature and light, increase mechanical damage to stems and buds, and lead to detrimental 

hypoxic or anoxic conditions 289. Vegetation exposed to ice in winter and spring often show 

reduced greenness and productivity during the following growing season 290. 

The impacts of full or partial snowmelt may last into the growing season. After a midwinter 

snow thaw, soils often freeze deeper and thaw out later, with the consequence that reactivated 

evergreen plants dry out when aboveground biomass is reactivated by the first warm weather 

in spring, a phenomenon known as “spring drought” 291.  

As winter has been warming more than summer, and this difference in warming rates between 

seasons will continue, it is projected that ongoing and future changes in cold-season conditions 

will contribute substantially to future plant-compositional structure of northern ecosystems and 

future distribution change of plant functional types, partly because of cold-season extreme 

climatic events 292. See section 4.3 for more information on expected future changes. 

  

4.2.2 Warm seasons 

Despite that the ArcticHubs study region generally will become wetter, there is a risk for 

increasing frequency of summer drought episodes; see Chapter 3.4.2. North-eastern Finland 

receives on average between 401 and 500 mm of annual precipitation and is hence one of the 

driest regions of north-western Europe. Still, there are little or no evidence of any major direct 

drought-induced impacts on vegetation during dry summers 293. One major reason is that 

vegetation is adapted to dry conditions. Another possible reason is that large parts of the forests 

in Finland are managed 294; thinned stands dominate the production forest of northern Finland, 

which limits drought-induced fire risk due to low amounts of deadwood. A third reason is that 

this region has a high density of lakes, swamps and mires that create natural obstacles for 

wildfire and at the same time provide water to plants even in dry periods 295. Drought-induced 

damage to Finnish forests appears to decrease with increasing latitude, despite the fact that 

northern forests receive less rainfall than southern forests 296. Still, a global study of summer 

drought identified an area in northern Finland that scored high on the Palmer Drought Index, 
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and that this was associated with a remotely sensed decline in vegetation greenness (often called 

‘browning’) over the period from 1982 to 2002, reflecting declining productivity caused by 

summer drought 297. However, on a slightly longer time scale, from 1982 to 2009, this same 

area in northern Finland shows increasing vegetation productivity 298, suggesting that any 

drought-induced declines in vegetation productivity until 2002 was quickly compensated for 

during the period 2002-2009. 

Northern wetlands are sensitive to drought. During the 2018 summer heatwave hitting north-

western Europe, photosynthetic activity of wetlands in Sweden and Finland (including study 

sites near Swedish and Finnish hubs) was reduced due to a widespread water table drawdown 

299. It also led to reduced methane emission, turning three out of the five monitoring sites from 

CO2 sinks to sources. However, it was not stated whether the mire vegetation at these sites 

showed signs of physical damage to tissues.  

Heatwaves in the Arctic tundra are becoming more frequent. An anomalously warm July on 

Svalbard had purely stimulatory impacts on biomass production of a mesic tundra ecosystem 

characterized by herbs and graminoids 300. A reason for such positive response to a heatwave 

is that this mesic tundra type has constant water access through water seeping in from higher 

altitudes and through thawing permafrost. Thus, a heatwave for such tundra types is to lesser 

extent associated with drought-related effects. On the other hand, numerous other experimental 

and observational studies manifest that summer drought indeed have negative impacts on both 

plants and soil organisms in arctic tundra 301. Seedlings are particularly vulnerable to summer 

drought, and windswept ridges provide the most severe environments in terms of temperature 

and drought stress 302. With the increasing climate change-induced thawing of snowbeds, plants 

adapted to such environments become more exposed to drought, and this is the reason why 

numerous snowbed species, and the entire snowbed ecosystem, are in decline and red-listed; 

see section 4.1.2 for more information on snowbeds.  

Extreme rainfall events during the warm season will occur more frequently, and there is already 

an increasing trend over northern regions. Such events cause damage both to the physical, biotic 

and human environment. They often trigger flash floods leading to high sediment transfers, 

uprooting or erosion of alluvial vegetation, increased mortality of fish and other aquatic 
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organisms, and damage to infrastructure and agricultural lands 303. In steep terrain, landslides 

and rock avalanches are common after heavy rainfall. In Norway, which is a country with much 

steep terrain, a landslide forecasting-and-warning service was launched in 2013 with the main 

goal of reducing economic and human losses caused by landslides 304. 

Vegetation is sensitive to heavy rainfall. Such events can negatively affect commercial plants 

and plants in their natural environment. For example, during heavy rainfall flowers can be 

physically damaged, nectar can be diluted, pollen can be degraded, and flowering length can be 

severely reduced. At the same time, pollinators become less effective through mechanical and 

energetic constraints, along with disruption of foraging patterns and disruption to sensory 

signals 305. Heavy rainfall during fruit maturing has similar negative effects on development 

and quality and increases susceptibility of fleshy fruits to mould infections 306. 

Windstorms have potentially major negative impacts on vegetation. Wind-felling of trees often 

occurs and tend to affect managed even-aged spruce stands more than mixed stands of 

deciduous trees, and, as reviewed by Potterf et al. 307, climate change will likely further amplify 

wind damage to trees due to the increasing frequency of strong winds, increasing growing stock, 

and shortening of the frozen soil period resulting in lowered tree ground anchorage during the 

windiest time of the year.  

Overall, extreme weather events during the growing season will increase in frequency within 

the ArcticHubs study region − with potential major consequences for nature and nature-based 

economies; see further treatment in sections 4.3 and 5.2. 

 

4.3 Future terrestrial ecosystem changes due to climate change (2023-2100) 

Despite increasing stress to vegetation due to winter climate change and more extreme events 

in summer, the boreal and arctic biomes are by and large becoming greener. The ongoing 

greening trend is attributed to increasing growth rates of in situ vegetation and northward and 

upward expansion of thermophilic plants, see Section 4.1.1. 

Poleward expansion of species is projected at an accelerated rate. Altered vegetation contribute 

to warming through impacts on surface albedo and the sensible heat flux 308. Increasing leaf 
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area at northern latitudes has a self-renewing effect; with continued warming, positive 

feedbacks between climate and vegetation (increasing biomass and earlier leaf-out) are 

amplifying warming, which is a process that will accelerate during the 21st century 309.  

As the winter season is warming faster than the summer season, the difference between summer 

and winter temperatures is diminishing over time. Analysis of simulations from 17 state-of-the-

art climate models indicates that an additional seasonality diminishment equivalent to a 20° 

equatorward shift could occur this century 310. 

The poleward expansion of species from gradual warming and the increasing frequency of 

extreme weather events will have massive impact on the distribution and relative abundance of 

ecosystems and plant functional types at high northern latitudes, both on land and in sea. 

However, there are uncertainties in how these changes will affect future ecosystem change, 

given that it is hard to predict the relative importance of trend changes in temperature and 

precipitation vs. the increasing frequency of extreme weather events causing direct or indirect 

damage to vegetation. Wind-felling of trees and anoxia damage to tundra vegetation from rain-

on-snow events are examples of direct damage, while vegetation damage from landslides or 

flash floods caused by heavy rainstorms are examples of indirect damage. Moreover, increasing 

frequencies of biotic events (e.g., forest fires, tundra fires, thermokarst formation, pest 

outbreaks) further complicate the projections.  

Models relying on trend-based climate change project a northward and upward expansion of 

major terrestrial ecosystem types, for example that temperate mixed broad-leaved forest will 

expand its range in southern Scandinavia, that boreal deciduous and conifer forests will move 

both northwards and upwards in the Nordic region, and that alpine tundra will decline 

drastically, with concomitant changes to net primary productivity 311. These trends are strongly 

reflected in the Red Lists of species and habitats; see treatment in Section 4.1. 

See sections 4.1.3 and 5.3 for ongoing and future changes to marine ecosystems. 

Incorporating events into the modelling results in projections that deviate from trend-based 

model projections 312. Under an RCP8.5 scenario, approximately 30 % of global land areas will 

experience changes in dominant vegetation type, both with and without extreme weather events 

employed in the modelling 313. However, projected changes with or without extreme weather 
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events differ regionally. For northern Europe and Greenland, a slightly larger proportion of land 

area will change when climatic extremes are incorporated into the model than in the same model 

without climatic extremes (Figure 4.8). This is particularly the case for southern regions of 

Finland, Sweden and Norway, and for the northernmost, coastal region of Troms and Finnmark 

in northern Norway. Iceland, on the other hand, will change more without extremes than with 

extremes. There are very little differences between the two models for the arctic regions of 

Greenland and Svalbard. In practice, the dominant vegetation type of all ice-free land areas of 

Greenland and Svalbard will change, irrespective of whether extremes are included in the model 

or not. However, extremes may affect the direction of change, i.e., which new vegetation type 

will establish. The model also shows that a large section of the Greenland ice sheet will become 

ice-free and vegetated (orange dots in both panels of Figure 4.8).  
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Figure 4.8. Change in dominant vegetation type by 2060-2080 under the RCP 8.5 scenario for 

northern Europe and large parts of Greenland. (a) Predictions by decision tree with extremes. 

(b) Predictions by decision tree without extremes. Reproduced from Figure 6 in Beigaitė et al. 

314. Disclaimer: Before this figure is reproduced in any public report, permission must be applied.  
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5 Impacts of climate change on the target activities of ArcticHubs – 

recent and future 

This chapter elaborates on the way climate change is affecting, and will affect, the target 

activities of ArcticHubs, i.e., indigenous activities, tourism, mining, forestry, and mariculture 

(fish framing, etc.). This is primarily a review of already published material. The impacts of 

climate change on these activities are a focal topic of several other reports to be produced in 

this project. Thus, in this report, a broad overview is provided, which can act as a jumping-off 

point for more rigorous evaluations, including data from interviews and DPSIR analyses, in 

upcoming ArcticHubs reports.  

For tourism and indigenous issues, the treatment is separated into the cold season (section 5.1) 

and the warm season (section 5.2), as impacts differ substantially between seasons. Fish 

farming (section 5.3), forestry (section 5.4) and mining (section 5.5) are not split according to 

season. 

 

5.1 Cryosphere (snow, ice and permafrost) and winter climate change 

5.1.1 Indigenous and other local people’s activities 

5.1.1.1 Reindeer husbandry 

Climate and land use changes have led to numerous challenges for reindeer herders whose 

livelihoods rely on an accessible and healthy ecosystem with predictable weather patterns. 

Reindeer herders have reported rather unanimously more variable weather, higher 

temperatures, more frequent winter rainfalls and increased windiness compared to earlier 

decades 315. In addition, increased snow depth, but later snow cover formation, and earlier snow 

melt have been reported 316. The herders’ observations coincide rather well with meteorological 

data 317; see also Chapter 4. 

Reindeer herders in Sweden, Finland, Norway, and Russia report a series of different negative 

consequences as a result of changing climatic conditions during all grazing seasons. The timing 

of snow melting during spring seasons affects the timing of the long spring migrations from 

coastal and inland forest to the foothill mountains. An earlier-than-normal snow melt in winter 
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grazing areas forces an early start of migrations towards calving areas. However, early arrival 

to calving areas is sometimes hampered by too much snow at the point of arrival. Furthermore, 

long-lasting, deep snow during the calving season has become a concern during later years. 

Furthermore, increasing numbers of predators has limited the possibilities to use low-elevation, 

forested foothill areas that have shallower snow cover, and would have been suitable for calving 

if it was not for the predator risk. During the actual spring migrations, warming spring weather 

have negatively affected ice conditions on lakes and rivers. Here, hydroelectric developments 

along most river systems in Sweden has further deteriorated ice conditions and forced 

displacement of migrations routes into adjacent often intensely managed forest lands. 

High summer temperatures have had negative impacts on reindeer health as well as grazing 

conditions. Late-season snow patches in the mountains have traditionally been important 

refuges for reindeer during warm days, but the remaining snow patches have become fewer and 

smaller resulting in negative effects on reindeer health. In particular, warm summer 

temperatures have become a serious concern in forest reindeer herding communities such as 

Malå and Gällivare. Herders in these communities also report on increases as well as changes 

in timing of impacts from insects. Insect harassment in combination with warm weather is 

believed to have negative consequences and reindeer health and wellbeing. From Malå, we have 

documented major shifts in reindeer space use as reindeer leave their traditional summer lands 

and spontaneously move to fall and winter areas already in July. Several factors are believed to 

contribute to this, including phenological timing, shifts in insect distribution, as well as an 

earlier onset of the mushroom season 318. Here, the increasing impacts of other land use 

practices also play a major role, as exemplified through a series of new wind power 

developments in Malå, increasing clearfelling (see treatment in 4.1.1), as well as expansion of 

mining areas in Gällivare. Increased land use pressure reduces the resilience of husbandry 

systems and worsen the negative impacts of climate change. 

Warm autumns can cause herds to disperse over a wide area (‘‘break loose”) in search of forage, 

which complicate the gathering of reindeer and the subsequent migration to the round-up sites 

319. Temperature can also affect rutting; during warm autumns rutting tend to start later or be 

unsynchronized 320. The combination of disturbed rutting, the absence or sporadic distribution 

of snow, the occurrence of mould on pastures, the formation of ground-ice, in combination with 

the abovementioned herd dispersal, result in very challenging autumn conditions for herders 
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321. These autumn challenges are even more accentuated in areas where lichen biomass has 

declined to very low levels following enduring, extensive utilization.  

When round-up and slaughtering are delayed due to warm autumn weather, herders end up with 

less meat for sale, since calves rapidly lose weight with the onset of frosts and snow cover 

formation, particularly if the herding is based exclusively on natural pastures. Herders respond 

to these conditions by more active gathering and moving, and increased monitoring of herds to 

prevent traffic accidents or losses to carnivores 322.  

During autumns with unseasonally late formation of a permanent snow cover, reindeer need to 

be gathered and moved to the round-up sites using all-terrain vehicles or helicopters instead of 

snowmobiles. Belated and incomplete ice formation on waterbodies and late freezing of bogs 

make gathering even more challenging, as these conditions hinder migration between seasonal 

pastures. The reduced bearing capacity of ice poses risk to both reindeer and herders; late ice 

formation may facilitate herding, because, in some reindeer herding communities, open water 

bodies can provide effective barriers; while in other reindeer herding communities, reindeer 

tend to cross rivers or lakes with thin ice, but often fall into the water and must try swim to the 

shore, though often with fatal consequences 323. There are also several known incidents of 

herders drowning from falling through thin ice 324. In Sweden, trucks may be necessary in some 

herding communities to transport reindeer between different seasonal pastures because of lost 

migration routes or unsafe ice conditions 325. 

Winters with long snow-free periods or a thin snow cover can provide better opportunities for 

grazing, and mild winter weather can help reindeer maintain good body condition 326. In the 

case of early snow melt, the availability of fresh, green, soft forage increases, which is 

favourable for lactating reindeer and their new-born calves. Late snow melt can greatly decrease 

the availability of forage for pregnant or lactating reindeer, and be fatal for new-born calves, 

which can perish in deep and soft snow or be easily caught by predators 327. 

Warm winters have more frequent and longer-lasting thaw events. Increasing frequency of 

freeze-thaw cycles or rain-on-snow events cause formation of very dense snow or ice layers on 
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the ground or within the snowpack 328. Formation of ground ice can severely deteriorate the 

grazing conditions of reindeer (“locked pastures”). Decreased accessibility to ground 

vegetation due to ice, icy snow and/deep snow may lead to increased reindeer mortality and 

reduced calving success. During the winter 2019/20, the northern parts of Finland, Sweden and 

Norway experienced an exceptional winter. There was a heavy snowfall starting in autumn, 

which increased throughout the winter and led to formation of landscape-scale icy crusts. 

Reindeer were not able to dig through the snow and ice for forage, resulting in high reliance on 

supplemental feeding. Herders in Sweden and Finland had to start feeding much earlier than 

during normal winters, while herders in Norway, who normally do not rely on supplemental 

feeding 329, had to purchase tons of forage that were flown into winter herding areas. The severe 

conditions this winter resulted in reindeer exhibiting poor physical condition, an increase in 

reindeer mortality, and greatly reduced slaughtering numbers 330.  

The most recent winter (2021/22) was even just as challenging as the 2019/20-winter. The 

2021/22 winter is not yet covered in scientific literature, but news reports which include 

interviews with herders, draw a picture of poor grazing conditions due to temperature 

fluctuations around the freezing point combined with much snowfall early in the season 331; see 

also Section 3.1.3. The high snowfall on the Norwegian side led to increased avalanche risk; 

and in a valley in Troms, around 70 reindeer were killed in an avalanche 332. 

In Finland regular winter feeding either on pasture or in enclosures became part of the herding 

system in the southern and central parts of the reindeer management area in the late 1980s and 

mid-1990s, mainly as a result of the detrimental impact of forestry on lichen resources 333. 

Changing winter conditions together with competing land use have enhanced the need for 

supplementary feeding. However, many herders in Norway and Sweden report that feeding 

increases vulnerability and is not a preferred adaptation in the long run 334. The heavy reliance 

on supplemental feeding requires purchase, or own agricultural production, of forage 335, greatly 

increasing economic costs. Long transport routes, which often is the case, severely increases 

the costs of purchasing supplemental forage. Supplemental feeding also tends to tame the 

reindeer, which makes them more difficult to gather and move – and increase the risks of 
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predation and outbreaks of infectious diseases 336. There is also a fear that supplementary 

feeding may profoundly change herding cultural traditions, as reindeer lose their wild 

characteristics and their ability to graze and survive on their own in nature 337.  

The impacts of variation in environmental and climatic conditions on the abundance of reindeer 

cows that produce calves have, until recently, not been included in demographic models. The 

proportion of reindeer cows that bring calves has previously been based on pregnancy rates and 

the assumption that the early natural loss of calves from calving to earmarking/counting of 

calves has been estimated to 6% 338. Using environmental data such as snow conditions during 

winter, the timing of spring and the amount of available forage the following summer Tveraa 

et al. 339 have recently developed an improved model for estimation of early and natural loss of 

reindeer calves. This new model explains between 37 and 90 % of the variation in the increment 

of calves in Norwegian reindeer populations. This provides new knowledge of how reindeer 

husbandry is affected by year-to-year variation in climatic, grazing and environmental 

conditions, and how large the proportion of surviving calves would be under different scenarios.  

In Supporting information, chapter 7.3, we provide a detailed assessment of year-to year 

variation in late-winter snow season and snowmelt timing for one hub (Kvalsund-Kautokeino), 

emphasizing the impacts of snow season on forage availability in spring. 

 

5.1.1.2 Fishing and hunting 

Extremely warm winter events affect local arctic communities; the decreased ice coverage 

challenge traditional food systems and increase food-related stress 340. Coastal fishing and 

hunting traditions of local communities in Greenland are affected by climate change. Sea-ice is 

retreating, which hampers traditional hunting and hinders the provision of basic food for 

humans and dogs 341. Reduced utility of sled dogs has led to a rapid decline in total number of 

dogs in Greenland 342. 

For the traditional late winter (March-April) fjord fishing of halibut and hunting of ringed seal, 

reduced fjord ice can in fact be advantageous for two reasons. First, ice-rich fjords limit 
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visibility reducing the ability to navigate, hunt and fish. Second, boats are increasingly used for 

fishing and seal hunting, which provides increased mobility than the traditionally used dogsled 

343. Still there are numerous negative aspects of climate change for this fjord system: halibut 

leaves sections of the fjord affected by increasing frequency of muddy freshwater released from 

an ice-dammed lake; locals without boats, relying on dogsled to reach the fjord, come in fewer 

numbers because of limited access; the marine ecosystem is under change which brings fear of 

reduced halibut and ringed seal in the future. 

Climate-induced and environment-induced changes to marine ecosystems have forced peoples 

of southwest Greenland to rapidly adjust their resource harvesting – from seal hunting to cod 

fishing, then from cod fishing to shrimp 344. While harvesting of marine resources in south-west 

Greenland has become challenging, shorter winter seasons may facilitate agricultural 

intensification and expansion in the area 345. 

Winter hunting of musk oxen has been lucrative due to high prices on winter skins. However, 

hunting (in all seasons) contributed to the muskox decline of the early 1900s. Not all 

populations of musk oxen are in good condition, and climate change will worsen the conditions 

for this high-Arctic animal. Traditional indigenous harvesting of products from musk oxen is 

therefore in decline 346. It is not clear how climate change will affect future caribou hunting in 

the Nuup Kangerlua area. Currently, the western Greenland population is considered as being 

of Least Concern (LC), i.e., it is not threatened 347. If the population remains stable, harvesting 

may continue at current rates, at least at short time horizons. However, Inuit communities on 

the Canadian side of the Labrador Sea have suffered from recent caribou population declines, 

which are partly related to climate 348, indicating that similar climate-induced changes in 

caribou herd size may also soon take place in western Greenland. 

5.1.2 Tourism  

Tourism is in this report treated in two sections: cryosphere and winter (this section) and 

summer (section 5.2.2). The introductory paragraphs to this section 5.1.2 are also relevant for 

summer tourism. 
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Arctic tourism is mainly based on natural experiences and local – and often indigenous – 

cultures. Consequently, both ecological and social sustainability are important for the future of 

Arctic tourism. The nine tourism hubs differ in activities and marketing strategies due to 

different aspects such as location, accessibility, cultural history, and local economies. Overall, 

there is an ongoing enhanced interest in Arctic destinations resulting in more anthropogenic 

pressure on the fragile natural and cultural landscapes characterising the area. At the same time, 

as mentioned in previous chapters, the Arctic is experiencing current climate change and 

intensified extreme events that affects local ecosystems and communities. Even though there 

are several inequalities, all hubs have experienced increasing traffic during the past years and 

will have to face coming changes in the tourism industry due to climate change. 

“Last-chance tourism” is a term that has emerged in the last decade 349, generated from climate 

change. It is a concept that involves experiencing climate change by seeing melting glaciers, 

disappearing landscapes or seascapes, and disappearing nature and communities. With 

increasing climate change the interest in last-chance tourism is likely to grow in the years to 

come. 

With increased tourism, seasonal fluctuations, which have long characterized Arctic tourism, 

have during the past two decades decreased to some extent. The length of the tourist season has 

strengthened the foundation of tourism as an important industry in the Arctic. This applies to 

all the nine tourism hubs. Nature-based tourism in the Arctic mainly involves activities such as 

hiking, running, biking, climbing, horse-back riding, see-angling, bird watching, whale 

watching, cruise and expedition tourism, sightseeing, and all kinds of motorized nature 

activities. 

Arctic tourism in winter season involves activities such as winter cruise tourism, general winter 

activities, hiking, skiing, dog sledding, scooter tours, visiting ice caves, and watching northern 

lights. For many long-distance travellers, their holiday to an Arctic destination is also their first 

encounter with snow. Thus, very basic activities such as holding snow in their hands, walking 

on snow, and making a snowball, are for these tourists an exceptional experience. Other popular 

all-season activities also include visiting cultural heritage sites, enjoying local food and 

beverages, and specifically in Svalbard visiting mines.  

In response to climate change, the local tourism in the Arctic will face a growing number of 

changes and challenges that it needs to adapt to soon. Lack of snow in wintertime will have 
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negative consequences for traditional winter tourism 350, retreating glaciers will impact the 

stability of ice caves, and declining sea ice leads to a cascade of consequences for marine 

wildlife, indirectly causing increased human disturbance, more chemical pollution and noise 

that will alter the structure and function of entire ecosystems 351. In terrestrial ecosystems we 

see consequences from ongoing cryospheric and hydrological changes, such as thawing of 

permafrost and retreat of glaciers causing increased risk for landslides and affecting 

accessibility to popular destinations. 

Cruise tourism is one of the fastest growing tourism industries in the Arctic. Due to shrinking 

and thinner sea ice, the Arctic is becoming more accessible for longer cruise seasons, apparent 

in hubs such as Longyearbyen and Nuup Kangerlua 352, which in turn is likely to lead to more 

cruise traffic, and subsequently increased greenhouse gas emissions, and potential negative 

aspects on marine wildlife. The number of cruise ship visitors in the High Arctic increased with 

57 % from 2008 to 2017. In Iceland there was an increase of 66 % from 2015 to 2017, and ports 

in northern Norway experienced an increase of 33 % from 2014 to 2019353. In response to 

increased accessibility and more attractions in these areas, the tourist footprint has increased 

with 600 % in winter season over the past two decades 354. 

Lack of snow is a big issue in inland tourism in northern Scandinavia where winter and 

especially Christmas time is the high season. In addition to downhill and cross-country skiing, 

all other activities such as husky or snow mobile safaris require snow. Downhill skiing can be 

handled by production of artificial snow, but for longer routes it is difficult to produce sufficient 

amounts. In the Alps, the survival of ski resorts implies an increase in snowmaking 

requirements, and their associated costs and environmental consequences 355. While the costs 

and concerns of the lack of snow have been biggest in the Alps, the lack of snow and the need 

for artificially produced snow or snow stored over summer, especially for the early winter 

tourism, has already become a problem also for Arctic ski destinations 356. 

For numerous winter tourists, especially from lower latitudes, watching northern lights is a 

primary reason for their travels to the far north 357. The Northern lights are a flickering and 

unpredictable phenomenon which poses challenges for providers of Northern Lights tours as 
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well as for tourists who take part in numerous Northern Lights trips, at times without ever 

actually catching glimpse of the lights 358. Northern light activity is particularly strong in a belt 

around ca. 65-65 °N. Hence, northern parts of Finland, Norway and Sweden are attractive for 

northern lights tourism. Climate change may affect the future of the northern lights tourism 

industry, partly due to the projected increase in cloudiness and decline in snow cover. Clouds 

disrupt the visibility; hence, tourists will avoid areas with a reputation of frequent cloud cover. 

Watching northern lights in combination with snow is particularly attractive, especially in 

mountainous coastal landscapes where snow-capped mountains provide a beautiful frame for 

northern lights-lit skies. This is the typical advertised view of northern lights to attract tourists 

to coastal northern Norway. If mountains are free of snow, they appear dark and may dampen 

the tourists’ astonishment of the skyline. Northern lights tourism in Sweden and Finland often 

take place in early winter season before snow settles, and tourists often view the northern lights 

through a conifer canopy, or from open areas without any landscape features framing the 

skyline. The inland areas of Sweden and Finland and Kautokeino in Norway are, and will be, 

less cloudy than coastal areas of northern Norway. Overall, the Finnish and Swedish northern 

lights tourism may therefore be less affected by climate change than the coastal Norwegian 

northern lights tourism. 

There are concerns about uncontrolled and seasonal mass tourism that will continue to grow, 

which does not necessarily benefit local communities and might harm the vulnerable Arctic 

natural ecosystems. This clearly shows the need for more adaptation strategies and management 

plans across national borders to reduce risk of negative impacts from existing and future 

consequences of climatic, social and economic change on already strained environments.  

On the other hand, The Arctic as a niche destination is a fragile concept both regarding changing 

ecosystems and a potential growth of tourism towards over-tourism in the high seasons 359. As 

climate change intensifies, and negative impacts become more prominent in international 

narratives, more arctic tourists might begin to avoid air travels or specific destinations to cause 

less harm to the global climate, and to the local environment, communities and ecosystems 360. 

Changes in precipitation and extreme weather events might furthermore affect transport and 

infrastructure which in turn might restrict accessibility to arctic destinations. A potential result 

of less travels might be more domestic and less international tourism.  
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The consequences of Arctic climate change require planning and adaptation  361. However, 

Salim et al. 362 point out that most of the adaptation strategies implemented by tourism operators 

due to climate change in the Alps have been reactive, mainly consisting in the installation of 

safety equipment, the renovation of access and viewpoints or construction of new 

infrastructures to allow tourist activities to continue despite the consequences of climate 

change. There is likewise a need to consider other transformative strategies, such as the 

adoption of new activities. 

 

5.2 Growing-season climate change 

5.2.1 Indigenous and other local people’s activities 

5.2.1.1 Reindeer husbandry 

Reindeer herders’ reports of increased number of warm days, increased precipitation and heavy 

rains in summer coincide well with meteorological observations 363. Heat increases thermal 

stress in reindeer, which are adopted to cool summer climate 364. Calves suffer 

disproportionately from long periods of warm weather and the concomitant insect harassment. 

Insect harassment affects weight and reproduction and increases mortality because stressed 

reindeer spend less time grazing, and their energy expenditure increases 365. They also suffer 

from heavy rains, which are strongly associated with warm weather periods. Heat and insect 

harassment draw reindeer into large herds, which facilitates gathering and moving of animals 

for calf-marking during June and July. Handling of reindeer during heatwaves causes additional 

stress. Therefore, the calves are often marked at night. Marking of calves can also be postponed, 

and during very warm summers calves are left unmarked until the autumn round-ups 366.  

Longer growing seasons and increasing effective temperature sums result in densification and 

expansion of forests northwards and upwards 367. The most profound negative impacts will be 

on palsa mire and fell ecosystems, snowbeds and snow patches (see Section 4.1.2), which are 

valuable grazing areas for reindeer during long warm periods and when harassment from insects 
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are intense 368. These climatic changes with associated behavioral changes in reindeer, have 

consequences for herding practices: for example, calf marking sites may need to be relocated 

369.  

Warming-induced outbreaks of geometrid moths is expected to increase both in space (area) 

and time (frequency); see Chapter 4. Such outbreaks will reduce biodiversity and the overall 

nutritional value of forage available to reindeer. The volume of lichens, a preferred reindeer 

forage, is expected to decline with increasing warming, partly because of improved growing 

conditions for vascular plants that may outcompete lichens through higher growth rates or 

invade more rapidly into vegetation-free areas previously covered by lichens, but where lichens 

have been excessively removed during periods of high reindeer densities 370. In addition, forest 

fire risk is increasing – both due to increasing frequency of summer drought periods and 

lightning, and this will add to the already heavy pressure to which reindeer husbandry is 

exposed. 

Warming-induced changes in the distribution and epidemiology of infectious diseases creates 

new risks for both reindeer and reindeer herders. For example, warmer and wetter conditions 

and increase in shrub and forest vegetation can increase tick distribution and abundance 371; see 

also chapter 4. Parasitic epidemics and new invasive alien species are part of this cocktail that 

will put increasing pressure on reindeer husbandry 372. When reindeer are gathered in enclosures 

for calf marking, there is a risk of disease outbreaks and parasite transmission, particularly in 

wet, muddy conditions 373. 

In Supporting information 3, we provide a detailed assessment of year-to year variation in 

spring and summer conditions for one hub (Kvalsund-Kautokeino), highlighting the large 

variability in spring green-up and summer greenness. The large variation between years has 

always posed challenges for reindeer herders in their planning of migrations, and increasing 

climatic change will further reduce predictability. 

5.2.1.2 Fishing and hunting  

In the Faroes, traditional harvesting of natural resources (fishing, sheep-rearing, whaling, 

harvesting of seabirds and eggs, etc.) continues to contribute significantly to the Faroese diet 
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374. The availability of these resources for local people crucially depends upon a combination 

of environmental/climatic and socio-political conditions. In recent years, seabirds and fish, in 

particular, have declined in the coastal areas, and although the exact causes are not completely 

understood, climate variation and change are most likely a defining cause; see section 4.1 on 

seabird collapse. 

In southwest Greenland, melting glaciers stimulate large summer phytoplankton blooms, which 

may affect fishery resources in the future, if such bloom become even more frequent 375. 

5.2.2 Tourism  

This section supplements Section 5.1.2 where general tourism issues were discussed in concert 

with cryosphere and winter tourism. 

Even though the winter might be the high season for tourism in most of the hubs, summer 

tourism is also important in these areas. First, cruise tourism is a main attraction for the hubs 

near the coast, including sightseeing and guiding from a growing number of landing sites. 

Especially in Nuup Kangerlua and Svalbard, the cruise tourists alternate between cultural and 

nature-based activities, e.g., visiting museums and cultural heritage sites as well as watching 

glaciers, marine mammals or birds. In Svalbard and northernmost Norway, midnight activities 

are particularly attractive since the midnight sun is exotic and a new experience for many 

international travellers 376. Other popular summer activities involve hiking, biking, water 

activities, and fishing. Tourists also come to see pristine picturesque landscapes. In Inari and 

Kittilä, visiting the national parks is a popular activity, and on Suðuroy tourists come to visit 

small settlements and villages. In the hubs Nuup Kangerlua and Svalbard, watching glaciers is 

an important activity. 

Changes in summer climate involves higher temperatures in the Arctic. Especially in the 

summer season, more summer outdoor activities and potential mass-tourism is expected in all 

hubs as the Arctic becomes warmer and more appealing as nature tourism destinations helped 

by the Right of Public Access, as compared to destinations at lower latitudes where summer 

weather may become too warm to be pleasant 377, as was the case in 2022 during the extreme 
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summer heat and drought of central and southern Europe. Travelling to avoid heat is in some 

studies termed as heat-escape tourism 378.  

‘Overtourism’ is a relatively recent concept commonly associated with cities such as Barcelona 

and Rio de Janeiro; though not a precise term, all definitions of overtourism incorporate 

negative experiences, which lead to host communities becoming less amenable to, or able to 

cope with, tourism 379. Overtourism is already a challenge for certain northern communities. In 

Svalbard, indicators of overtourism include lacking facilities when cruise ships arrive, 

increasing sewage and organic waste discharged untreated into the sea, increasing rate of 

tourism-related fatalities, erosion of vulnerable arctic tundra from large groups of people 

walking in nature (often enroute to cultural heritage sites), and highly limited ability for rescue 

operations if something should happen to a cruise ship or any other large group of tourists 380. 

These challenges are not new for Svalbard 381, while a climate change-induced rise in arctic 

tourism will put even more pressure on small, northern communities. 

As reindeer husbandry becomes more unstable and the business/economies are strained because 

of less favourable conditions due to climatic change, the reindeer herders will have to rely even 

more than today on income from tourism. This includes trading of handicrafts and meat and 

offering guided Sami activities to tourists 382. In a rapidly changing world with resulting 

changes in global food security, small-scale family-sized farms might profit in tourism business 

as there is a growing trend for small-scale local food production 383.  

 

5.3 Fish farming 

Mariculture hosts a unique potential for increasing seafood production and at the same time 

reducing greenhouse gas emissions from food systems 384. Climate change may both constrain 

and enhance blue growth in the selected fish farming hubs. A rise in seawater temperature may 

constrain cultivation of cold-water species in southernly areas but may open for cultivation of 

new species that thrive better at warmer temperatures. In turn, cultivation of cold-water species 

will be more profitable in the North due to longer growing seasons 385. In the following we will 
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mainly focus on the impacts of climate change on the economically most important species 

farmed in the three different fish farming hubs, the Atlantic salmon (Salmo salar). The 

production cycle of Atlantic salmon starts in a land-based freshwater hatchery where Atlantic 

salmon smolts are produced in either water-intensive flow-through systems or energy-intensive, 

but water-saving recirculating aquaculture systems (RAS). Thereafter, in most cases, seawater-

ready smolts are transferred to sea cages for grow out 386. Climate change will likely affect the 

entire salmon production cycle via abiotic and biotic factors, both directly and indirectly. 

 

5.3.1 Direct impacts of climate change on the fish farming hubs 

5.3.1.1 Abiotic factors 

Temperature is a critical physical factor in aquaculture production. It determines the rate of 

almost all physiological processes, including development, growth, and maturation in 

ectothermic animals including fish 387. The Atlantic salmon is a cold-water adapted species with 

an optimal growth at temperatures around 14°C, and good growth at temperatures ranging from 

10 °C – 18 °C 388. Prolonged exposure to temperatures above 18 °C causes a reduction in 

appetite and growth 389 and mortality increases rapidly when temperatures exceed 22.5 °C 390. 

However, welfare issues have been reported already at lower temperatures. For instance, 

Atlantic salmon that were reared at 16 °C in freshwater showed a higher prevalence of lense 

opacities than the control fish reared at 10 °C 391. High water temperatures also increase the risk 

for early maturation, causing economic loss due to growth stagnation and welfare issues 392. 

High temperatures in sea cages are often associated with decreasing oxygen levels leading to 

hypoxic conditions holding a severe risk for mass mortality events; the risks of oxygen 

depletion are discussed separately below. 

Whereas wild salmon can escape unfavourable water temperatures, farmed fish are trapped to 

the conditions of the farming environment. In land-based freshwater hatcheries, temperature is 

controlled through heating or cooling of the intake water. Tight temperature control requires 
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energy but is one main advantage of the highly controllable RAS systems 393. In RAS systems, 

rearing water is warmed by heat generated from pumping the water through the system, 

facilitating year-round fast growth of the fish. This heat generation can however be problematic 

during summers and possible heat waves pushing cooling systems performance to its limits; a 

problem that occurs already today (personal communication with a fish farmer on Faroe 

Islands). If water temperatures in RAS become too high due to high air temperatures in the 

surroundings, it will directly affect salmon health and welfare. In addition, elevated 

temperatures lead to increased CO2 levels due to the higher metabolic rates of the fish. Exposure 

to prolonged elevated CO2 levels (> 12 mg/L) may cause reduced growth, osmoregulatory 

problems and problems associated with acid-base balance 394. 

Sea cages are today the dominating production form during the grow-out phase of Atlantic 

salmon. Lately, alternative production strategies including land-based production throughout 

the entire production cycle are established around the world. Given that most of the seafood 

will still be produced in the sea in the fish farming hubs, climate change induced increase in 

water temperatures will have direct effects on Atlantic salmon growth and welfare during grow-

out. Current climate models project a stronger increase in sea surface temperatures during 

winter than during summer along the Norwegian coast 395. 

Today’s average monthly seawater temperatures for the three different fish farming hubs and 

projected future change in sea surface temperatures are presented in Figure 5.1. 

Changes in temperature of coastal waters of the different fish farming hubs by the end of the 

century are difficult to predict with global coarse scale models. Downscaling of the global 

models will provide better resolutions at a more regional scale. A recent study compared 

modelled sea surface temperatures for 43 fish farming sites along the Norwegian coast with on-

site temperature registrations and found over- and underestimations in the range of several 

degrees and maximal deviations of 6 °C 396. This study reports that, under RCP 4.5 scenario, 

the projected change in temperatures within 2069 will lead to less optimal conditions for salmon 

farming in southern Norway during summer due to a higher number of days with temperatures 

above 20 °C 397. The current average winter and summer temperatures in the production area 

13 (including Varangerfjord) are 4 °C and 10-11 °C, respectively 398. 
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Figure 5.1. Monthly average sea temperatures for the different fish farming hubs (A) and 

projected increase in sea surface temperatures for winter months (December-February) (B) and 

summer months (June – August) (C) based on SSP2-4.5 (data retrieved from IPCC Data 

Distribution Center via the WGI Interactive Atlas). 

 

Consequently, milder winters with higher temperatures could therefore lead to better growing 

conditions and hence positively affect salmon aquaculture in the Varanger hub. Thus, most of 

the growth in the Norwegian aquaculture industry is expected to occur in the Norwegian Arctic 

399. 

Marine heatwaves pose another threat to the fish farming industry. The frequency, duration, 

and intensity of marine heatwaves has increased during the past decades and a further increase 

has been forecasted 400. Recent heatwaves in Newfoundland 401, and Tasmania 402 resulted in 

fish welfare issues and huge economic losses for fish farmers. Temperature does not only affect 

salmon physiology but may also exacerbate negative impacts by pathogens, disease dynamics 

and parasites 403.  
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Oxygen 

The solubility of oxygen in water is temperature and salinity dependent. It decreases with 

increasing salinity and increasing temperatures. The oxygen demands of the salmon increase 

with increasing temperatures due to a higher metabolic rate 404. High sea temperatures are 

therefore problematic as they result in hypoxic conditions due to combined effects of decreased 

oxygen solubility and increased metabolism of the fish in sea cages. Remen et al. reported 

elevated levels of the stress hormone cortisol, and reduction in feeding and growth when oxygen 

levels fell below 60 % at 16 °C 405. The hypoxia tolerance threshold for Atlantic salmon 

increases with temperature. At 18 °C the limiting oxygen saturation is reached already at 55 % 

oxygen saturation 406.    

 

 

 

 

Extreme weather events and increased precipitation  

Simulations indicate an increase in frequency and intensity of storms at high latitudes towards 

the end of the century 407. Storms and waves are a severe threat for the fish farming industry. 

Wind and waves can damage infrastructure, cause welfare problems for the fish and also pose 

a severe risk for the environment. In 2020. nearly 50 000 farmed Atlantic salmon escaped in 

Scotland after a storm had damaged the mooring ropes and more than 30 000 fish died in the 

incident 408. Escaped domesticated salmon are a threat for wild salmon populations as they may 

exert negative effects to the genetic pool during interbreeding 409 .  

The projected change towards milder winters and overall increased precipitation will increase 

freshwater inflow to the fjords. This may have both positive and negative consequences. The 

parasitic sea lice (Lepeoptheirus salmonis and Caligus sp.) do not tolerate fresh water and 

increased freshwater inflow may aid to reduce sea lice pressure. On the other hand, river-runoff 
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will carry organic material from sediments into the fjord, and the resulting higher levels in 

phosphorous and nitrogen host a risk for conditions that benefit the development of harmful 

algae blooms 410.  

 

Ocean acidification (pH) 

About one third of the anthropogenic CO2 emissions has been taken up by the ocean 411. The 

uptake of CO2 has resulted in a decrease in pH by 0.1 since pre-industrial times 412 and a further 

decrease to values between 8.05 and 7.75, depending on different greenhouse gas emission 

scenarios, is projected for the end of the century 413. Ocean acidification will not directly impact 

salmon aquaculture as Atlantic salmon cope well at a pH down to 6.2 414. Yet, ocean 

acidification will affect the marine ecosystem and will reduce the potential for cultivation of 

lower trophic species such as sea urchins and bivalves that are more vulnerable acidification 

415. The red king crab (Paralithodes camtschaticus) has a high economic value for local 

fisheries in the Varanger hub and studies indicate increased mortality of this species at pH 7.5 

and lower 416. 

 

5.3.1.2 Biotic factors 

Disease, pathogens and parasite dynamics in a changing climate 

Higher temperatures may lead to an increased susceptibility of Atlantic salmon to pathogens. 

For example, Atlantic salmon is more vulnerable to amoebic gill disease caused by the protist 

Neoparamoeba perurans at higher temperatures 417.  

On the other hand, milder winters, may reduce the risk for infections with coldwater 

pathogens such as Moritella viscosa, causative agent of winter ulcers or Aliivibrio salmonicida, 

responsible for cold water vibriosis 418. 
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Sea lice infestations are considered the biggest problem faced by the salmon farming industry 

today. High infection pressure of Lepeophtheirus salmonis and species of the genus Caligus at 

farm sites pose a major threat to wild salmon populations and lead to welfare and health 

problems of farmed salmon 419. Delicing procedures cause environmental issues, welfare issues 

for the fish, and considerable costs for the fish farmer 420. High water temperatures accelerate 

the life cycle of the salmon lice substantially. A recent study reported the development time of 

females from copepodid to adult at different temperature regimes and showed a reduction from 

72 days post-infection at 6 °C to 13 days post-infection at 21 °C 421. In another study it has been 

modelled that the infection pressure will increase by two given a 2 °C increase in the 

temperature range from 9 to 11 °C) and even stronger effects (4.4-fold increase) in the lower 

temperature range (5 to 7 °C) 422. Furthermore, weakening of the Atlantic-Pacific boundaries 

can lead to introduction of pacific sea louse species through Pacific fish species 423.     

New parasite species and diseases are most certainly going to cause problems for the sector. 

Today, sea lice pressure in the Varanger fjord is low. In 2022, the production zones West-

Finnmark and East-Finnmark are two out of eight production areas that were granted further 

growth. Also, the southernmost production area 1, where Egersund is located, got green light 

for further growth, this area is located close to production areas with high sea lice densities 

(production areas 2 and 3), and sea lice pressure may restrict future growth in the coming years. 

Several reports predict that fish farming activities will be shifted northwards 424; this together 

with increasing temperatures will likely lead to an increased sea lice pressure also in the north, 

given that the sea lice problematic is not resolved by other measures, for example production 

of fish that are resistant to sea lice through genetic engineering. 

 

Changes in the marine ecosystem 

Sustainable seafood production is highly dependent on a functioning marine ecosystem. Abiotic 

and biotic changes in the farm environment may affect fish farming both directly and indirectly. 

Eutrophication in combination with higher water temperatures may increase the risk for 

incidents of harmful algae blooms or jellyfish invasions 425. Harmful algae blooms have caused 
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single mass mortality (8 million dead salmon in 2019) events in salmon farms in Northern-

Norway (Lofoten and Tromsø area) in the past. Furthermore, the reports on harmful jellyfish 

blooms have increased during the past years 426. Damage to gills and skin of Atlantic salmon 

caused by jellyfish can lead to severe lesions, and in worst case mortality 427. Smaller wounds 

caused by jellyfish stings are suspected to become ports for pathogens and jellyfish may be 

carriers of pathogens. For example, an invasion of the jellyfish Dipleurosoma typicum 

coincided with a tenacibaculosis outbreak in a fish farm located in Ryggefjord, ca. 200 km 

north-west of the Varanger area 428.  

The underlying causes of harmful algae blooms and jelly fish invasions are still poorly 

understood, and it has been argued that the perception of an increased frequency of harmful 

algae bloom during the past years could be explained by the aquaculture-related intensification 

of monitoring procedures 429. Yet, there is a strong scientific consensus that future 

anthropogenic activities are going to increase the risk for harmful algae blooms and better early 

warning systems are necessary to safeguard marine food production 430. 

5.3.2 Indirect impacts of climate change on the fish farming hubs 

5.3.2.1 Feed production as bottleneck  

In 2016, 25 % of the salmon feed ingredients came from marine resources, 71% were of plant 

origin and 4 % were from other origins 431. The need for fish feed illustrates how the arctic fish 

farming hubs are directly connected to global fisheries and agriculture. A recent study reported 

that the average global yield of soyabeans, a major ingredient of salmon feed, has decreased by 

4.5 % from 1980 to 2010 432. It is projected that, under RCP 8.5, over 90 % of the world’s 

population will be affected by losses of food production from agriculture and fisheries, with the 

strongest impacts in the tropical regions 433. 
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5.3.2.2 Governance 

In Norway, new aquaculture licenses are distributed according to a traffic light system, where 

green light indicates further growth of salmon farming at sea 434. The sea lice situation in the 

south-western areas and Mid-Norway combined with more unfavorable culturing conditions 

due to increasing water temperatures will likely shift the mariculture northwards enabling 

economic growth and providing new jobs in the Varanger area. An intensification of fish 

farming in the north will increase the pressure on an already vulnerable ecosystem and can lead 

to conflicting interests among fish farmers, fishermen and the tourism industry. The projected 

intensification of fish farming will require the necessary changes in logistics including viable 

infrastructure for product processing and transportation. The Norwegian government is 

following the EU climate regulations towards a zero emissions society. To reduce greenhouse 

gas emissions from the transport sector, the government has issued a demand for low-and zero-

emission vessels used by the aquaculture and fisheries sector that is being stepwise introduced 

from 2024 435. These indirect consequences of climate change must be considered in future-

scenario planning 436. 

5.4 Forestry 

Forests are under a constant change due to several biotic and abiotic factors. Abiotic factors 

like temperature, humidity, precipitation, wind and soil properties essentially determine the 

production capability of forest ecosystems but can also cause several types of disturbances. 

Biotic factors like species structure and species interactions also constantly modify forest 

ecosystems and can also cause disturbances in forest ecosystems. Abiotic and biotic factors 

often interact, and the ecosystem dynamics is a consequential series of these interactions. From 

the economical point of view, different disturbance factors become damage agents when they 

cause considerable loss to forest owners via killed trees, reduced growth of trees or impaired 

quality of expected tree-based products. In silviculture, abiotic and biotic damage agents are 

controlled via different measures but cannot be totally eliminated. Both abiotic and biotic 

damage agents are connected to climatic factors and thus their importance in forestry can 

change along with predicted climate change and associated climatic factors. This chapter 

shortly reviews the effect of climate change on the most important damage agents from the 

point of view of forestry in ArcticHubs project hub areas in Finland, Sweden, and Norway. 
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5.4.1 Heat and drought effects 

The rise of temperature in all seasons is one of the predicted consequences of climate change. 

As the growth of trees is highly dependent on temperature the rise of temperature in the growing 

season is predicted to increase the growth of trees and thus expected yield of forests 437. 

However, the combination of extremely high temperatures and drought can have detrimental 

effects on trees as the deficit of water leads to reduced growth of trees or can eventually kill 

trees. Among the most important tree species in boreal forests, Norway spruce (Picea abies) is 

especially vulnerable to drought. Norway spruce grows naturally in fertile soils, but in recent 

decades it has been regenerated also on less fertile soils due to fear of cervid damage to Scots 

pine (Pinus sylvestris) 438. Less fertile soils are often moraine, which is permeable to water and 

thus the water content of soil is low. The predicted temperature increase combined with drought 

is thus especially detrimental to spruce in moraine soils. However, according to climate change 

scenarios, the effect of drought on spruce is the most serious in southern Finland 439. In the 

ArcticHubs hub areas in northern Finland, the effect of drought in spring and summer does not 

increase during the coming couple of decades but starts to increase after 2040’s. The effects of 

heat and drought on forestry in ArcticHubs areas in all countries are thus probably minor. 

5.4.2 Pest outbreaks 

Several invertebrate species inhabit trees and they have an important role in forest succession 

dynamics. The population of some species can increase manyfold after climatically induced 

disturbance or other stress factors making them potential pests from the point of view of forestry 

440. Some species show somewhat regular outbreaks, while some outbreaks are eruptive, and 

some have sustained effects on trees and forest ecosystems. Because the development of insects 

is highly dependent on temperature, increasing temperatures due to climate change has been 

predicted to enhance the reproduction capability also of several pests. However, the population 

dynamics of invertebrate species is dependent also on several non-climatic factors and, 

therefore, it is not straightforward to distinguish the effects of climate change from other factors 

like forestry-related changes in forest ecosystems 441. The most important invertebrate forest 

pests in northern boreal forests are defoliators and bark beetles (Scolytidae spp.). 
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5.4.2.1  Defoliators 

In northern boreal forests, the most common defoliators on birch (Betula spp.) are geometrids 

as autumnal moth (Epirrita autumnata) and winter moth (Operophtera autumnata); see section 

4.1.2. Both species occur throughout boreal forests, but they have had the largest outbreaks in 

the northernmost parts of Finland, Sweden and Norway. The largest outbreaks of autumnal 

moth in the 1960s led to the death of mountain birch over hundreds of square kilometres in the 

northernmost part of Finland 442. Less severe outbreaks by autumnal moth followed in 1990s 

and mid-2000s 443. Outbreaks of winter moth have not been that common than those of 

autumnal moth, and the first large defoliation was recorded in the beginning of 2000s, which 

led to large-scale mortality 444. The defoliation from winter moth completely changed 

ecosystem composition and function.  

Low winter temperatures have suppressed the reproduction of both defoliator species because 

they overwinter as eggs which die at temperatures below −36 °C. Predicted increase in winter 

temperatures will reduce the number of winters with extreme low temperatures. Thus, outbreak 

area will expand 445. Although mountain birch forests are not important from a forestry point-

of-view, they are important for local communities as reindeer herding pastures, as wood supply, 

and as areas rich in bilberry (Vaccinium myrtillus) and lingonberry (V. vitis-idaea), which are 

picked in large quantities. Therefore, the impact of climate change on local cultures and 

livelihoods will be considerable through the warming-induced increase in forest pest outbreaks 

446.  

There are several species defoliating Scots pine (Pinus sylvestris), but so far, only three of these 

species have been important as pests in northern boreal forests. These are European pine sawfly 

(Neodiprion sertifer), common pine sawfly (Diprion pini) and pine looper (Bupalus piniarus). 

Of these, pine looper has caused only local and rather limited damage. Typical feature of the 

pine defoliator outbreaks is that they occur on drier and less fertile soils, i.e., graded sandy soils 

447.  

The life cycles of European pine sawfly and common pine sawfly differ in that N. sertifer 

overwinters as eggs in Scots pine needles whereas D. pini overwinters as cocoons in soil. 

Therefore, also the impacts of climatic factors on these species differ. Winter temperature below 
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−36 °C is detrimental to N. sertifer eggs and, therefore, if the frequency of cold winters 

decreases due to climate change, outbreaks will be more common in future 448. The predictions 

also show that the range of outbreaks expands to northernmost Finland. As D. pini overwinters 

as cocoons in soil, an increase in winter temperature will not affect its reproduction in a similar 

way as for N. sertifer. 

Scots pine commonly recover from defoliation because N. sertifer mostly defoliates older 

shoots, while fresh shoots remain intact. If severe defoliation runs of several years, parts of 

trees can die, but the most common effect is reduced growth. Defoliation by D. pini, however, 

is more detrimental to Scots pine, because it also defoliates fresh shoots. Multi-year defoliation 

result in increased mortality of trees. In the ArcticHubs hub forested areas, i.e., mostly northern 

boreal forests, the frequency of outbreaks is projected to increase three- to five-fold 449. 

However, the impact on forestry will probably be limited and comparable to the present 

situation in more southerly forests. In southern parts of Finland there have been instances of 

large-scale defoliation leading to retarded growth rates, but mortality has only occurred very 

locally. 

5.4.2.2 Bark beetles 

C. 60 species of bark beetle (Scolytidae spp.) occur in boreal forests of northern Finland, 

Norway and Sweden, and some of them can cause severe damage to coniferous trees, especially 

to Norway spruce 450. The most severe pest is spruce bark beetle, Ips typographus, which has 

killed trees in large areas in several European countries 451. The range of spruce bark beetle 

extends to northern boreal conifer forests. 

Spruce bark beetle needs fresh phloem under bark for brood development. Thus, the outbreaks 

have typically followed after large disturbances (e.g., windthrows) and stress factors (e.g., 

extremely dry and warm summers) 452. If the population level is high, spruce bark beetle can 

also attack healthy spruce. The amount of damage to spruce increases along stress and damage 

gradients, and thus, the magnitude of spruce bark beetle damage is strongly coupled to climatic 

factors. The amount of spruce bark beetle damage in Finland has historically been at low levels 

as compared to other Nordic countries. From the beginning of 2010s, however, the amount of 
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damage has increased in southern Finland 453. This increase is partly attributed to high amount 

of fresh windthrown spruce in forests, but also to warm and dry summers during this same 

period. Extreme heat events and storm events are expected to occur more frequently (see section 

4.2). Thus, conditions suitable for spruce bark beetle outbreaks are likely to increase during the 

next decades, at least in the southern boreal forests of the Nordic countries. 

Spruce bark beetle damage in Finland have so far not affected forestry despite some large 

windthrow areas containing several hundreds to some millions of cubic meters of windthrow 

trees 454. The proportion of trees either windthrown or killed by spruce bark beetle has 

corresponded to only about 1 % of the annual forest harvest in Finland. Spruce bark beetle 

damage in the northern boreal forests above 65 °N, and thus within the ArcticHubs study region, 

have been scarce and of minor impact to forestry. According to climate change scenarios, 

spruce bark beetle damage in northern boreal forests probably remain minor also in future 

despite increasing temperatures 455. Another reason for low impact of spruce bark beetle 

damage on forestry and tree markets is due to the fact that the capacity of tree harvesting 

logistics and wood processing industry are capable of effectively harvest damaged trees. 

5.4.3 Windbreak and winter-related damage 

During the period from 1978 to 2019 there were a total of 15 large windthrows in Finland 456. 

Of these, the eight most remarkable windthrows occurred between 2001 and 2013. The amount 

of destroyed trees in these storms totalled about 22 million m3. Minor windthrows occur almost 

every year, and the volume of windfallen trees in each year has been between 0.1 and 1.1 million 

m3. The only major windthrow in the ArcticHubs area of northern Finland occurred in 1982, 

which felled about 3 million m3. Windthrows are, thus, more common in central and southern 

Finland. 

Over a long timescale, major storms causing windthrows have, on average, occurred once every 

10-15-years 457. There has been a significant increase in storm frequency during the last decades 

458. Projections regarding future high wind speeds are variable 459. In all scenarios, the predicted 

change has been relatively low, between −3 and +2 %. Although the change in the frequency 

of storms might not be radical, single heavy storms can cause remarkable damage to forests. As 
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an example, the storm “Gudrun” felled ca. 70 mill. m3 of trees in Sweden, causing severe 

harvesting challenges; resulting in major bark beetle damage 460.  

From the forestry point-of-view, there are several factors that alleviate the knock-on effects of 

windthrows; forest industries use large amounts of wood annually and they usually can handle 

also windthrown trees by means of the extensive forest road network, the high number of 

harvesters, and the efficient harvesting logistics enabling the harvest of felled trees. Moreover, 

in Finland and Sweden, legislation oblige forest owners to harvest windthrows and other 

damaged trees from forest if they exceed a certain amount of timber. 

To conclude, despite their relatively low frequency, large windthrows will probably occur at 

high latitudes covering the ArcticHubs forest hub areas. Extremely high amounts of windthrows 

will affect wood markets due to excessive amounts of accessible wood coming to market 461. 

The effect on the wood market will highly depend on the general market situation, season, and 

the amount of different wood species. 

 

Three ungulate species occur in the ArcticHubs forest hub areas. These are moose (Alces alces), 

reindeer (Rangifer tarandus) and roe deer (Capreolus capreolus). Of these, only moose can 

cause major damage to trees. In summer, moose utilize several species of plants, but in winter, 

a moose's diet consists mainly of woody species 462. In winter, a moose's diet consists mostly 

of Scots pine, but also birch (Betula spp.), willows (Salix spp.), aspen (Populus tremula), 

juniper (Juniperus communis), planted Norway spruce (Picea abies) and rowan (Sorbus 

aucuparia) are regularly consumed. In terms of quantity, moose consume mostly Scots pine in 

winter. 

Moose cause damage to trees by breaking leader shoots and the main stem, by browsing lateral 

shoots and by stripping bark 463. Most of the damage occurs in winter, but summertime damage 

can also be substantial 464. Consequently, especially smaller plants can die, but browsing for 

the most part causes defects in the tree stem and reduces growth or impairs the technical quality 

of saw wood. 

In Finland, moose damage to forest plantations has been recorded on more than 900,000 ha (= 

9,000 km2) during the 2010s, on which severe damage was recorded on up to 100,000 ha. The 
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majority (75%; 85,000 ha) of damage occurred in Scots pine-dominated stands. This 

corresponded to ca. 22 % of all Scots pine plantations 465. In Sweden, moose damage was found 

in 12-15% of Scots pine plantations during the period from 2003 to 2013. Also in Norway, 

moose and other ungulates have been among the most severe damage agents to forestry; moose 

has been estimated to cause a loss of 1.5 to 3.7 million euros annually. 

The thickness of snow affects moose damage; during deep snow cover moose move little to 

save energy and concentrate their browsing on small areas, mostly Scots pine-dominated 

seedling stands. Under such conditions, remarkable damage to trees occurs 466. The recent 

increase in midwinter snow depth (see section 3.1.2), which will prevail into the near future 

(see section 3.3), may lead to more concentrated habitat use of moose and increased damage to 

trees also within the ArcticHubs forest areas 467. However, moose populations are heavily 

regulated, and regional targets for population size also consider the development of moose 

damage. Therefore, although climate change can have some effects on moose ecology, it is 

probably not among the most important factors for future forest development. 

Snow accumulation frequently damage tree crowns 468. In areas expecting more snow, such 

type of damage to trees may increase. However, declining snow will be the predominant trend, 

especially at decadal time scales (see section 4.3). Instead, damage related to reduced snow 

cover on the ground and increasing frequency of temperature fluctuations around the freezing 

point will be causing increasing winter stress to trees (see also section 3.4.1). Reduced snow 

cover can result in deeper soil frost, while periods of milder temperature regimes stimulate to 

physiological activity. This combination of these types of events results in frost drought to 

conifers, which often becomes visible as red belts in the forested landscape 469. Such events 

will reduce the quality of timber (Figure 5.2). 

Moreover, as climate becomes warmer, disturbed hibernation and increasing respiration during 

dark winter periods will become an increasing challenge for northern conifers 470. Respiration 

increases with increasing winter temperature, because cells are becoming activated and will 

need to do maintenance respiration 471. Carbon consumption during maintenance respiration 

can equal, or even exceed, carbon consumption allocated to growth during the growing season. 

Maintenance respiration is instigated at below-freezing temperature; at −2.4 °C respiration rate 
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is approximately half of the rate at +5 °C 472. Loss of carbohydrate reserves has numerous 

negative consequences for plants, in particular evergreen plants. It leads to reduced growth rates 

in the early growing season 473. More serious is that loss of carbohydrates leads to dehardening, 

i.e., the plants’ cold tolerance is reduced, because intracellular carbohydrates act as antifreeze 

solution 474. Northern and continental species are more vulnerable to increasing winter 

temperatures than southern and more oceanic species 475. Crawford 476 explains this: northern 

and continental species are adapted to quickly respond to increasing temperatures to make use 

of the whole growing season, whereas for southern and more oceanic species, a temperature 

increase is not an indicator that plants can trust for assessing whether the true growing season 

is initiated. Thus, the response rate to increasing temperature is slower in southern and oceanic 

species. To conclude, the climate change-induced increase in oceanicity of interior parts of 

Finland, Sweden and Norway will result in challenging winter conditions for Norway spruce 

and Scots pine, and this will have major implications for quality of timber with impacts on the 

economy of forestry in these countries. 

 

Figure 5.2. Planted Norway spruce trees dead due to a winter with frost drought. These trees 

were planted in an oceanic deciduous forest (Senja, Norway). The deciduous trees were not 

visibly affected by the frost drought. Photo: Jarle W. Bjerke © 
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5.5 Mining 

Climate change has a range of impacts on mining activities in the Arctic. On one hand, 

retreating glaciers and declining sea ice extent open up more opportunities for mineral 

exploration and extraction; on the other hand, thawing permafrost and increasing rainfall 

potentially increase challenges with mining operations and the stability of mine tailings dams 

and other mine infrastructure as well as increase potentially toxic run-off from mining sites. 

5.5.1 Glacier retreat and decline of sea ice extent 

Glaciers in Greenland have been retreating and thinning for decades 477, and this is expected to 

continue. As a result, more ice-free land is becoming available for mineral exploration and 

extraction. The Nordic geological surveys have recently published a report 478 on the 

‘unexploited economic potential’ in the Nordic bedrock for mineral exploration of ‘critical raw 

materials’ 479 that are essential for technologies needed for the green energy transition. They 

concluded that Greenland is relatively unexplored compared to other Nordic countries but has 

great potential, particularly for those metals that are most in demand such as rare earth elements 

(REE). This has prompted a new focus on geological and geophysical research projects 480 and 

attracted major interest in mineral exploration with a number of companies starting new 

exploration activities in Greenland in 2022 481. 

Similarly, the declining sea ice extent will facilitate exploration and exploitation of natural 

resources in the Arctic oceans, in particular seabed mining 482. As result of the increasing 

interest in seabed mining in the Arctic, the Norwegian government has recently initiated an 

impact assessment as part of the opening process for mineral exploration on the Norwegian 

continental shelf and has funded several research programmes into the geological, technological 

and environmental aspects of (deep) sea mining and the mapping of mineral resources on the 

continental shelf 483. 

5.5.2 Permafrost thaw 

One of the consequences of permafrost thaw is a thickening of the active layer, which can cause 

subsidence, slope instability and changes in hydrology. These permafrost hazards increase the 
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risk of damage to infrastructures such as buildings, roads and pipelines 484. and can also impact 

the stability of mining-specific infrastructures such as waste rock piles, mine tailings and 

tailings dams 485. Although these risks are highest in Russia and North America, where 

significant damage to infrastructures are already reported, the ArcticHubs locations in 

Greenland and Svalbard are also at risk. In permafrost regions, including Greenland and 

Svalbard, mine tailings and waste rock piles are often frozen and chemical reactions such as 

oxidation are limited under these cryogenic conditions. When mine tailings thaw, the now 

available water can interact with the tailings leading to weathering, leaching and pollutant 

transport, particularly in tailings containing sulphides such as iron and copper ores 486. 

Degrading permafrost is thought to have contributed to the failure of a mine tailings dam from 

a gold mine in eastern Russia causing the spillage of large quantities of toxic sediments which 

polluted the local river ecosystems, fisheries and a nearby town 487. Engineering solutions to 

prevent leakage and damage to infrastructures do exist, but the costs can be high. However, in 

general, permafrost thaw related damage or risk of damage to infrastructure is much less in 

Greenland and Svalbard than in North America or Russia due to the ground properties and 

construction types and maintenance 488. 
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Figure 5.3. Aitik copper mine, near Gällivare, Sweden. Photo: Corine Davids © 
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6 Supporting information 

6.1 NDVI trends for hubs 

Trends of MODIS Maximum NDVI (MaxNDVI) and summed NDVI (SumNDVI) over the DOY-period 145-241 for the various hubs in the Nordic 

countries. Significant trends in italics. SumNDVI is based on 6-day averages for the June-August period. n.s. = not significant. 

 

Mean 

MaxNDVI 

Trend 

MaxNDVI p-level Trend MaxNDVI Mean SumNDVI Trend SumNDVI Trend SumNDVI 

Hub 2000-2021 2000-2021 2000-2021 DOY 145-241 2000-2021 2000-2021 

Kemijärvi 0.74 0.02 <0.05 4.84 0.26 <0.01 

Kemi 0.80 0.00 n.s. 5.17 0.14 <0.05 

Inari 0.71 0.06 <0.01 4.52 0.44 <0.01 

Kittilä 0.77 0.02 n.s. 4.95 0.25 <0.01 

Jokkmokk 0.76 0.01 n.s. 4.90 0.30 <0.01 

Gällivare 0.75 0.01 n.s. 4.75 0.02 <0.05 

Khibiny 0.58 0.04 <0.01 3.39 0.29 n.s. 

Kovdor 0.75 0.04 <0.01 4.83 0.39 <0.01 

Kautokeino-Kvalsund 0.66 0.02 n.s. 3.81 0.16 n.s. 

Varangerfjord 0.62 0.04 <0.01 3.59 0.30 <0.05 

Gran sameby Winter 0.76 0.01 n.s. 4.94 0.22 <0.01 

Grans sameby Summer 0.72 0.04 <0.01 3.95 0.26 n.s. 

Egersund 0.74 0.01 n.s. 4.85 0.07 n.s. 



 

 

www.luke.fi/arctichubs/ 

6.2 NDVI statistics for Iceland 

Bar graphs showing the statistical results (min, max, mean, standard deviation) for the gain 

coefficient broken down by region in Iceland and land cover type.  
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6.3 Changes in growing season in the Kvalsund area: impacts on reindeer 

grazing 

This report does not go into detail at hub-level on every aspect. However, here we dive into one 

specific hub to further illustrate how year-to-year changes in growing season impact reindeer 

grazing conditions. Within the Kautokeino-Kvalsund indigenous hub, we selected a 2 km × 2 

km polygon for analyses of possible impacts on the grazing system due to changes in growing 

season parameters. The polygon is within the reindeer district 22-Fiettar and covers parts of the 

valley Kvalsunddalen with surrounding altitudes up to 200 m a.s.l. (Figure S1). It is an 

important area, since it is grazed and used by reindeer both at spring, summer and autumn, it 

has a gathering area, and parts of the area is also within herding routes 489. Hence, the reindeer 

need to utilize the changes in the growing season. The area is also only a few kilometers 

northwest of the Nussir ASA’s suggested copper mine, and the planned mining activity will 

need to adapt to the reindeer’s seasonal use of the area. Further, the timing of when the area is 

used also impacts and puts pressure on other land users and between different herding groups.  

Overall, the MODIS satellite data from March 2000 until September 2022 shows no significant 

trends in growing season parameters, but shows large variability between the years, where years 

with warm spring and summer can be used as example of near-future normal years according 

to climatic scenarios. 

If the reindeer migrate into the area when it is still snow-covered, it has access only to limited 

forage resources; it will need to graze on lichens and prostrate shrubs on the snow-free ridges. 

The area (red square on Figure A1) is on average free of snow 12 May (mean date for the period 

2000-2022), although some smaller spots become snow-free much earlier. Late snowmelt 

occurred in the years 2000 (5 June) and 2017 (4 June). Early snowmelt occured in 2015 (24 

April) and 2004 (25 April). Hence, there is more than 40 days between the very late and very 

early snowmelt. When the first sprouting occurs, more and better forage resources become 

available. On average, sprouting starts on 31 May. Sprouting is earlier in the lowland and on 

ridges within the study area, and much later in snowbeds. 

 

 
489 Eira et al. 2020 



 

 

Page 124 / 176 

 

  

Figure S1. Kvalsund area in Finnmark, north Norway. The maps show herding routes. Growth 

season parameters is extracted from the red square. 

A more uniform green-up, defined as unfolded leaves on dwarf birch, initiates a period when 

food is very easily available, and the food is nutrient-rich and there are no disturbing insects. 

The mean (2000-2022) date for green-up is 6 June. The latest green-up occurred in the years 

2000 (1 July) and 2020 (17 June). In both years, this very belated green-up was a result of 

extreme snow amounts in winter and late thaw in spring. The correlation between green-up date 

and May temperature is high and significant (r2 = 0.41, p < 0.001, n = 23). Skipping the first 

year of the time series (2000), increases the correlation to r2 = 0.58, showing that lot of snow 

with corresponding late snowmelt delayed the general onset of growth that year. The earliest 

onset of growth was 22 May (Year 2006), which is 40 days earlier than in the extreme late year 

2000. The temperature data used is from the SeNorge gridded dataset 490. 

Time of peak NDVI is the time of the year with the highest biomass. On average, for the study 

area, peak is reached on 26 July. Forage quality of most plant species start to decrease from 

peak time. 

Time-integrated NDVI (TI NDVI) values indicate the total available forage resources each year 

and useful for assessing the number of reindeer that can graze within a particular area. TI NDVI 

for the period from 25 June to 25 July correlates well with mean June-July temperature (r2 = 

 
490 Lussana et al. 2018 
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0.26, p = 0.012, n = 23). Albeit not statistically significant (p = 0.21), there is a tendency to 

increasing TI-NDVI for the 2000-2022 period (Figure S2). The lowest TI-NDVI occurred in 

the year 2000 when onset of growth was very late and June-July temperature was below 

average. Further, the year 2012 was very cold and with low TI-NDVI, a year elucidated in detail 

in Bjerke et al. 491. The highest annual productivity, and hence, lots of available reindeer forage, 

occurred in the most recent summer in the time series, 2022. This summer had a TI-NDVI value 

of 20.7, as compared to only 16.0 in the year 2000 (Figure S2). The last seven years have all 

had TI-NDVI values above the 2000-2022 average. 

 

  

Figure S2. Time- integrated NDVI (25 June to 25 July) for the Kvalsund area (red square in 

Figure S1). 

Autumn colouring indicate less available forage resources. Time for yellowing of leaves, 

defined as more than 50 % yellow leaves on birch, occurs on average 13 September, with a very 

early coloring in the year 2011 (27 August) and late in 2017 (24 September). Although green 

grass and herbs are still found in snowbeds and wetlands after the general yellowing of leaves, 

the grazing value of the area rapidly decrease in autumn. 

 

 
491 Bjerke et al. 2014 
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